. Nano Technology News .

A nano-gear in a nano-motor inside
by Staff Writers
Mumbai, India (SPX) Jan 24, 2013

A phagosome transported inside a living cell by molecular motors is held by a laser trap. This allows measurement of the picoNewton forces exerted by motors as they haul the phagosome inside the cell. Credit: Sukant Saran, TIFR.

To live is to move. You strike to swat that irritable mosquito, which skilfully evades the hand of death. How did that happen? Who moved your hand, and what saved the mosquito? Enter the Molecular Motors, nanoscale protein-machines in the muscles of your hand and wings of the mosquito. You need these motors to swat mosquitoes, blink your eyes, walk, eat, drink... just name it. Millions of motors tug as a team within your muscles, and you swat the mosquito.

This is teamwork at its exquisite best. Paradoxically, a weak and inefficient motor (called dynein) is the one that generates large forces in many different biological processes. Why has nature made this counter-intuitive choice? Scientists at TIFR, led by Dr.

Roop Mallik, have discovered that a team of dyneins is able to share a load much larger than any one of them can handle, due to the unique ability of each dynein to change gears. Because of this, dynein's do much better at teamwork than other stronger motors that cannot change gears. This work will be published in the top-tier journal Cell in January 2013.

This is the PhD thesis work of Arpan Rai, who was ably supported by members of Mallik's team, Ashim Rai, Avin Ramaiya and Rupam Jha. This group of young students took a laser beam and focused it down to a tiny spot inside a mouse cell.

Small objects inside the cell which were being moved around by motors could be trapped in this laser beam. Now, the motors tried their best to pull this object out of this "laser trap".

The figure shows an artist's rendition of such an object being pulled out of the laser trap by four dynein motors. Mallik says: "Each dynein showed a special ability to shift gears, just like you shift gears in your car to go uphill. Therefore, each dynein in a team could speed up or slow down, depending how hard it was pulled back.

This allowed the dyneins to bunch close together as they were pulling. The bunching helped dyneins to share their load equitably, and therefore work efficiently to generate large forces. Remarkably, motor-teams made up of another motor (called kinesin) which is much stronger than dynein, could not generate comparable forces. The reason? Well ... you guessed it right. Kinesin does not have a gear!!"

Taken together, these new studies show that Nature may have learnt how to use the gear in a motor much before we made our Ferrari's and Lamborghini's. But, what boggles the mind is that dynein's gear works on a size scale that is ten-million times smaller than the Ferrari's gear.


Related Links
Tata Institute of Fundamental Research
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear


New Research Gives Insight into Graphene Grain Boundaries
Chicago IL (SPX) Jan 17, 2013
Using graphene - either as an alternative to, or most likely as a complementary material with - silicon, offers the promise of much faster future electronics, along with several other advantages over the commonly used semiconductor. However, creating the one-atom thick sheets of carbon known as graphene in a way that could be easily integrated into mass production methods has proven difficult. ... read more

Sikorsky, Boeing Partner for Joint Multi-Role Future Vertical Lift Requirements

Airlines turn profit from EU freeze on carbon tax: environmentalists

Brazil signs deal to manufacture 'copters

Sound may protect airliners from birds

China to launch 20 spacecrafts in 2013

Mr Xi in Space

China plans manned space launch in 2013: state media

China to launch manned spacecraft

US charges East European cyber virus gang

Global Web censors use devices from US firm: study

Russian cyberlab discovers new virus

Anonymous hacks Argentina data agency

China coal plant shut by health chiefs

Keeping the lights on with renewables

Czech PM slams Albania grid decision

United States lags in clean energy: study

Tiny silicon particles a hydrogen source

Lebanon's feuds 'could spark gas conflict'

Algerian energy sector faces risky future

Aquino alleges China harassed Philippines boats

Raytheon, USAF complete Small Diameter Bomb II fit check on F-35 aircraft

Lockheed Martin Receives USAF Approval For Sniper Pod Full-Rate Production Under ATP-SE Program

Operators use JLENS for IED warfare simulation

Northrop Grumman to Provide Hand Held Precision Targeting Devices to US Army

A nano-gear in a nano-motor inside

New Research Gives Insight into Graphene Grain Boundaries

Chemistry resolves toxic concerns about carbon nanotubes

Engineer making rechargeable batteries with layered nanomaterials

Robofish Grace glides with the greatest of ease

Nexter joins robot development business

Game on: European student codes reach ISS

Robot Spheres in zero-gravity action

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement