Subscribe free to our newsletters via your
  Nano Technology News  

Subscribe free to our newsletters via your

Building better fighter planes and space ships
by Staff Writers
Binghamton NY (SPX) Jan 05, 2016

Researchers tested the force required to pluck a boron nitride nanotube (BNNT) from a polymer by welding a cantilever to the nanotube and pulling. The experimental set-up is shown in a schematic on the left and an actual image on the right. Image courtesy Changhong Ke, Binghamton University. For a larger version of this image please go here.

Thousands bound together are still thinner than a single strand of human hair, but with research from Binghamton University, boron nitride nanotubes may help build better fighter planes and space shuttles.

A team of scientists led by Changhong Ke, associate professor of mechanical engineering at Binghamton University's Thomas J. Watson School of Engineering and Applied Science, and researcher Xiaoming Chen were the first to determine the interface strength between boron nitride nanotubes (BNNTs) and epoxy and other polymers.

"We think that this could be the first step in a process that changes the way we design and make materials that affect the future of travel on this planet and exploration of other worlds beyond our own," said Ke. "Those materials may be way off still, but someone needed to take the first step, and we have."

Ke's group found that BNNTs in polymethyl metacrylate (PMMA) form much stronger interfaces than comparable carbon tubes with the same polymer. Furthermore, BNNT-epoxy interfaces are even stronger. A stronger interface means that a larger load can be transferred from the polymer to nanotubes, a critical characteristic for superior mechanical performance of composite materials. Future airplane wings and spacecraft hulls built of those BNNT composite materials could be lighter and more fuel efficient, while maintaining the strength needed to withstand the rigors of flight.

Since nanotube wall thickness and diameters are measured in billionths of a meter, Ke and Chen extracted single BNNTs from a piece of epoxy and then repeated the process with PMMA inside an electron microscope.

Their conclusions were based on the amount of force needed to do the extractions. This was the first time that BNNTs - more chemically and thermally stable than the more common carbon nanotubes (CNTs) - were in this kind of experiment. BNNTs can shield space radiation better than CNTs, which would make them an ideal building material for spacecraft.

"They are both light and strong," Ke said of the two kinds of tubes. "They have similar mechanical properties, but different electrical properties. Those differences help to add strength to the BNNT interfaces with the polymers."

Metaphorically, think of the epoxy or other polymer materials with the BNNT nanotubes inside like a piece of reinforced concrete. That concrete gets much of its strength from the makeup of the steel rebar and cement; the dispersion of rebar within the cement; the alignment of rebar within the cement; and "stickiness" of the connection between the rebar and the surrounding cement.

The scientists essentially measured the "stickiness" of a single nanotube 'rebar' - helped by molecular and electrostatic interactions - by removing it from polymer "cement."

The work was funded by the US Air Force Office of Scientific Research - Low Density Materials program, with materials provided by NASA. Co-authors Xianqiao Wang and graduate student Liuyang Zhang from the University of Georgia provided verification and explanation data through computational simulations after the experiments were conducted in Binghamton.

Catharine Fay from the NASA Langley Research Center and Cheol Park of the Center and the University of Virginia are co-authors on the paper.

In September, Ke and his collaborators received three years of additional funding totaling $815,000 from the Air Force to continue research.

The paper, "Mechanical Strength of Boron Nitride Nanotube-Polymer Interfaces," was published in the latest issue of Applied Physics Letters.


Related Links
Binghamton University
Nano Technology News From
Computer Chip Architecture, Technology and Manufacture

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Program seeks ability to assemble atom-sized pieces into practical products
Washington DC (SPX) Dec 31, 2015
DARPA recently launched its Atoms to Product (A2P) program, with the goal of developing technologies and processes to assemble nanometer-scale pieces-whose dimensions are near the size of atoms-into systems, components, or materials that are at least millimeter-scale in size. At the heart of that goal was a frustrating reality: Many common materials, when fabricated at nanometer-scale, exh ... read more

NASA research could save commercial airlines billions

$547M C-130J support contract secures 1,200 U.K. jobs

Pakistan eyeing deal for U.S. F-16 jets

Northrop Grumman to produce E-2D Advanced Hawkeye for Japan

China launches HD earth observation satellite

Chinese rover analyzes moon rocks: First new 'ground truth' in 40 years

Agreement with Chinese Space Tech Lab Will Advance Exploration Goals

China launches new communication satellite

Microsoft to warn users about 'nation-state' intrusion

Palantir raises $880 mn in new funding round

Swedish researchers reveal security hole

Chinese hackers target Taiwan opposition, media ahead of vote: officials

Improving electric motor efficiency via shape optimization

Cool roofs in China offer enhanced benefits during heat waves

US Christmas lights use more energy than entire countries

Recent US fuel economy improvements on par with 1970s

Probing Mars, charging cars

Generating electric current without energy consumption at room temps

Physicists come up with a way to make cleaner fuel cells

Melting, coating, and all-solid-state lithium batteries

Russia's Uran-9 robotic combat system hits international market

Turkey contracts Otokar for Cobra II armored vehicles

Forensic seismology tested on 2006 munitions depot 'cook-off' in Baghdad

Kongsberg Protector selected for General Dynamics Stryker

New acoustic technique reveals structural information in nanoscale materials

Program seeks ability to assemble atom-sized pieces into practical products

Nanodevices at one-hundredth the cost

Scientists blueprint tiny cellular 'nanomachine'

Human-machine superintelligence can solve the world's most dire problems

Synthetic Muscles

New social robot Nadine has a personality

NTU scientists unveil social and telepresence robots

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.