. Nano Technology News .

Flat boron by the numbers
by Staff Writers
Houston TX (SPX) Feb 01, 2013

Yakobson and his Rice colleagues have made progress toward 2-D boron through theoretical work that suggests the most practical ways to make the material and put it to work. Earlier calculations by the group indicated 2-D born would conduct electricity better than graphene.

It would be a terrible thing if laboratories striving to grow graphene from carbon atoms kept winding up with big pesky diamonds.

"That would be trouble, cleaning out the diamonds so you could do some real work," said Rice University theoretical physicist Boris Yakobson, chuckling at the absurd image.

Yet something like that keeps happening to experimentalists working to grow two-dimensional boron. Boron atoms have a strong preference to clump into three-dimensional shapes rather than assemble into pristine single-atom sheets, like carbon does when it becomes graphene. And boron clumps aren't nearly as sparkly.

Yakobson and his Rice colleagues have made progress toward 2-D boron through theoretical work that suggests the most practical ways to make the material and put it to work. Earlier calculations by the group indicated 2-D born would conduct electricity better than graphene.

Through first-principle calculations of the interaction of boron atoms with various substrates, the team came up with several possible paths experimentalists may take toward 2-D boron. Yakobson feels the work may point the way toward other useful two-dimensional materials.

The Rice team's results appear this week in the journal Angewandte Chemie International Edition. Rice graduate student Yuanyue Liu and research scientist Evgeni Penev are co-authors of the paper.

Yakobson's lab first reported in a Nano Letters paper last year that unlike graphene, 2-D boron rolled into a nanotube would always be metallic. Also unlike graphene, the atomic arrangement can change without changing the nature of the material. Instead of the steady rank-and-file of hexagons in a perfect graphene sheet, 2-D boron consists of triangles. But boron could have vacancies - missing atoms - without affecting its properties.

That's the theory. The problem that remains is how to make the stuff.

"We are, perhaps, so close," Penev said. "Here we have conceived a material that resembles graphene, but is always conductive no matter what form it takes. What we're doing now is exploring different possibilities to connect our theories with reality."

The best method, they calculated, might be to feed boron into a furnace with silver or gold substrates in a process called chemical vapor deposition, commonly used to make graphene. The substrate is important, Penev said, because the atoms have to spill onto the surface and stick, but not too strongly.

"You have to have a substrate that doesn't want to dissolve boron," he said. "On the other hand, you want a substrate that doesn't bind too strongly. You should be able to detach the boron layer."

Then, like graphene, these atom-thick boron sheets could be applied to other surfaces for testing and, ultimately, for use in applications.

The study also calculated methods for creating sheets via saturation of boron atoms on the surface of boride substrates, and the evaporation of metal atoms from metal borides that leaves just the target atoms in a sheet.

"There are a lot of reasons boron could be interesting," said Liu, the paper's first author. "Boron is carbon's neighbor on the periodic table, with one less electron, which might bring in lots of new physics and chemistry, especially on the nanoscale. For example, 2-D boron is more conductive than graphene because of its unique electronic structure and atomic arrangement.

"In fact, comparing (boron) with graphene is very helpful," he said. "The state-of-art synthesis methods for graphene provide us good templates to explore 2-D boron synthesis."

Yakobson is thinking a step beyond the current work. "There are many groups, at Rice and elsewhere, working on 2-D boron," he said. "To appreciate this work, you have to stand back and contrast it with graphene; in some sense, the synthesis of graphene is trivial.

"Why? Because graphene is a God-given material," he said. "It forms at the global minimum (energy) for carbon atoms - they go there willingly. But boron is a different story. It does not have a planar form as a global minimum, which makes it a really subtle problem. The novelty in this work is that we're trying to trick it into building a two-dimensional motif instead of three."

The search for 2-D materials with varying qualities is hot right now; another new paper from Rice on a hybrid graphene-hexagonal boron nitride shows the need for a 2-D semiconductor to complement the material's conducting and insulating elements.

Yakobson hopes his study serves as a guideline for practical routes to other novel materials. "Now that there is a growing interest in a variety of 2-D materials, this may be a template," he said.

Read the abstract here.


Related Links
Rice University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear


Notre Dame studies benefits and threats of nanotechnology research
Notre Dame IN (SPX) Jan 29, 2013
Every day scientists learn more about how the world works at the smallest scales. While this knowledge has the potential to help others, it's possible that the same discoveries can also be used in ways that cause widespread harm. A new article in the journal Nanomedicine, born out of a Federal Bureau of Investigation workshop held at the University of Notre Dame in September 2012, tackles ... read more

India gives Seychelles Dornier aircraft

100th F-35 On Lockheed Martin's Production Line

H-1 Helicopter Mission Computer Contract Awarded

Japan has concerns on F-35 sales

Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

Hacking case puts Dutch man in US prison

Schmidt book labels China online menace

Twitter hit by 'sophisticated' cyber attack

Wall Street Journal says also hit by Chinese hackers

Obama's energy secretary stepping down

Emission trading schemes limit green consumerism

Latest Ways to Make Your Business Energy Efficient

China coal plant shut by health chiefs

Deuterium Uptake in Magnetic Fusion Devices with Lithium Conditioned Carbon Walls

Oil prices rise after upbeat US, China data

New semiconductor research may extend integrated circuit battery life tenfold

Argentina pushes Falklands claim in EU

Commander sees women in elite US special forces

Canada receives upgraded LAV III

Marines Get Improved Precision Extended Range Munitions

Raytheon, US Navy demonstrate new dual targeting capability for JSOW C-1

Flat boron by the numbers

Notre Dame studies benefits and threats of nanotechnology research

A nano-gear in a nano-motor inside

New Research Gives Insight into Graphene Grain Boundaries

Engineers Building Hard-working Mining Robot

Robofish Grace glides with the greatest of ease

Nexter joins robot development business

Game on: European student codes reach ISS

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement