. Nano Technology News .

Glass-blowers at a nano scale
by Staff Writers
Lausanne, Switzerland (SPX) Mar 26, 2013

A few of these commercial pre-shrunk nano-capillaries have had their end diameter reduced to a few nanometers, from an original 200 nm, thanks to an electron microscope at EPFL's Center for MicroNanotechnology. Credit: Alain Herzog / EPFL.

Have you ever thrown into the fire - even if you shouldn't have - an empty packet of crisps? The outcome is striking: the plastic shrivels and bends into itself, until it turns into a small crumpled and blackened ball. This phenomenon is explained by the tendency of materials to pick up their original features in the presence of the right stimulus. Hence, this usually happens when heating materials that were originally shaped at high temperatures and cooled afterwards.

EPFL researchers realized that this phenomenon occurred to ultrathin quartz tubes (capillary tubes) under the beam of a scanning electron microscope.

"This is not the original microscope's purpose. The temperature increase is explained by an accumulation of electrons in the glass. Electrons accumulate because glass is a non-conductive material." explains Lorentz Steinbock, researcher at the Laboratory of Nanoscale Biology and co-author of a paper on this subject published in Nano-letters.

As the glass shrinks, it can be seen live on the microscope screen. "It's like a glass-blower. Thanks to the possibilities provided by the new microscope at EPFL's Center of Micronanotechnology (MIC), the operator can adjust the microscope's voltage and electric field strength while observing the tube's reaction. Thus, the person operating the microscope can very precisely control the shape he wants to give to the glass", says Aleksandra Radenovic, tenure-track assistant professor in charge of the laboratory.

At the end of this process, the capillary tube's ends are perfectly controllable in diameter, ranging from 200 nanometers to fully closed. The scientists tested their slimmed down tubes in an experiment aiming to detect DNA segments in a sample.

The test sample was moved from one container to another on a microfluidic chip. Whenever a molecule crossed the "channel" connecting the containers, the variation of the ion current was measured. As expected, the EPFL team obtained more accurate results with a tube reduced to the size of 11 nm than with standard market models.

"By using a capillary tube costing only a few cents, in five minutes we are able to make a device that can replace "nano-channels" sold for hundreds of dollars!" explains Aleksandra Radenovic.

These nano-fillers have a potential beyond laboratory usage. "We can imagine industrial applications in ultra-high precision printers, as well as opportunities in surgery, where micro-pipettes of this type could be used at a cell's scale", says the researcher.

For the time being, the method for manufacturing nano-capillary tubes is manual, the transition to an industrial scale will take some time. However, the researchers have been able to demonstrate the concept behind their discovery and have registered a patent. Therefore, the road is already paved.


Related Links
Ecole Polytechnique Federale de Lausanne
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear


Researchers create nanoscale spinning magnetic droplets
Raleigh NC (SPX) Mar 20, 2013
Researchers have successfully created a magnetic soliton - a nano-sized, spinning droplet that was first theorized 35 years ago. These solitons have implications for the creation of magnetic, spin-based computers. Solitons are waves, localized in space, that preserve their size and momentum. They were first observed in water. Solitons composed of light have proved useful for long distance, ... read more

Listening for the Boom and Rattle of Supersonic Flight

Navy tasks Virginia Tech research team with reducing deafening roar of fighter jets

Peru mulls replacing aged air force jets

France says Malaysia can build jets if it buys Rafale

China's Next Women Astronauts

Shenzhou 10 - Next Stop: Jiuquan

China's fourth space launch center to be in use in two years

China to launch new manned spacecraft

Papers link top China university to army 'hacking' unit

Vietnam War whistleblower defends WikiLeaks 'hero'

Taiwan sets up Internet shield to tackle China 'hacking'

S. Korea tracks cyber attack to China, North still suspect

Chinese leader Xi, Putin agree key energy deals

India is fourth largest energy consumer

'Earth Hour' evolves into springboard for wider action

The household carbon emission per capita in Northwestern China is only 2.05 tons CO2 per year

NRL Nike Laser Focuses on Nuclear Fusion

Greenhouse gas emissions of cars could drop 80 percent by 2050

Signalhorn Expands in Oman for Oil and Gas Customer

Trojan Battery Introduces Single-Point Watering System For Its Flooded Batteries

Nanofoams could create better body armor

NGC Offers New High-Resolution Sensors for Hawk Air Defense System

Seven killed in Marine Corps training accident

UN staring down a barrel over arms treaty

Smallest Vibration Sensor in the Quantum World

Researchers create nanoscale spinning magnetic droplets

New technique could improve optical devices

Silver nanoparticles may adversely affect environment

Robots joining China businesses, factories

Technique could help designers predict how legged robots will move on granular surfaces

Digital 'talking head' speaks for computer

Google buys machine learning startup

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement