. Nano Technology News .

How 'transparent' is graphene?
by Staff Writers
Cambridge MA (SPX) Dec 05, 2012

File image.

The amazing electrical, optical and strength properties of graphene, a single-atom-thick layer of carbon, have been extensively researched over the last decade. Recently, the material has been studied as a coating that might confer electrical conductivity while maintaining other properties of the underlying material.

But the "transparency" of such a graphene coating to wetting - a measure of the degree to which liquids spread out or bead up on a surface - is not as absolute as some researchers had thought.

New research at MIT shows that for materials with intermediate wettability, graphene does preserve the properties of the underlying material. But for more extreme cases - superhydrophobic surfaces, which intensely repel water, or superhydrophilic ones, which cause water to spread out - an added layer of graphene does significantly change the way coated materials behave.

That's important, because these extreme cases are generally of greatest interest. For example, coating a superhydrophobic material with graphene was seen as a possible way of making electronic circuits that would be protected from short-circuiting and corrosion in water. But it's not quite that simple, the new research shows.

The findings were recently published in the journal Physical Review Letters by professors Daniel Blankschtein and Michael Strano, graduate student Chih-Jeh Shih, and three other MIT postdocs and students.

Blankschtein, the Herman P. Meissner '29 Professor of Chemical Engineering, has studied wetting properties for a long time. He had not previously examined graphene, but decided to explore its wettability now that it's a material of great interest to researchers.

Because graphene's transparency to wettability turned out not to be perfect, Blankschtein says, "this finding may be viewed as a negative result." But, he adds, "it is nevertheless extremely important to the scientific community, because it [shows] what can actually be accomplished in practice."

Most electrically conductive materials, he points out, are hydrophilic: Water spreads readily on them, thoroughly wetting the surface. "On the other hand," he says, "for many electronic and military applications, it is important to fabricate hydrophobic, electrically conductive surfaces."

And while graphene's transparency to wettability is not perfect, it may still be good enough for such applications, he says.

This research, which included both theoretical modeling and experimental confirmation, shows that by depositing a large graphene sheet, grown by a process called chemical vapor deposition, on another material's surface, "it would be possible to induce electrical conductivity on the surface, while partially preserving the desired surface wetting behavior," Blankschtein says.

In fact, he adds, the contact angle of such a surface - the measure of how well it prevents wetting - "is believed to be one of the highest attainable on a flat, electrically conductive surface to date."

Shih, the lead author of the paper, says, "We have demonstrated that the wettability of a transparent, graphene-coated surface can be manipulated without undermining its thermal/electrical conductivity."

That's useful because "in general, conductive surfaces have very high wettability due to their high surface tension, and it is generally very challenging to produce a thermally/electrically conductive surface with tunable wettability" - wettability that can be controlled almost at will.

The team describes this partial transmission of the underlying characteristics as "translucency," rather than transparency, of wettability.

By selecting a particular combination of an underlying material with a graphene coating, different combinations of electrical, optical and wetting characteristics can be achieved, Shih says: "People can control the wetting properties of the substrate ... this breakthrough successfully decouples the conductivity and wettability of a material."

What's more, this opens up new possibilities for practical devices, because the materials involved are already widely used in industry, Shih says: "Due to its compatibility with today's semiconductor processes, many exciting opportunities may be pursued in the areas of microelectronics, nanoscale heat transfer and microfluidic devices - to simultaneously engineer desired wettability, heat transfer and electronic transport."

Blankschtein emphasizes that in addition to the potential applications, "I'm excited about this from a fundamental point of view." It shows, he says, that "you can't assume that you can just take a substrate and drop graphene on it without perturbing the wetting behavior." By understanding this complex behavior, "we can learn how to take advantage of that."

The work, which also involved MIT postdocs Qing Hua Wang, Shangchao Lin and Zhong Jin and graduate student Kyoo-Chul Park, was supported by the Office of Naval Research, the National Science Foundation and MIT's Institute for Soldier Nanotechnology.


Related Links
Massachusetts Institute of Technology
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear


A graphene nanotube hybrid
Houston TX (SPX) Nov 29, 2012
A seamless graphene/nanotube hybrid created at Rice University may be the best electrode interface material possible for many energy storage and electronics applications. Led by Rice chemist James Tour, researchers have successfully grown forests of carbon nanotubes that rise quickly from sheets of graphene to astounding lengths of up to 120 microns, according to a paper published by Nature Comm ... read more

China Southern to buy 10 A330-300 aircraft

Four injured in China fighter jet crash: reports

Sandy adds to global air traffic gloom: IATA

India to buy nearly 130 Su-30 fighter jets from Russia

Mr Xi in Space

China plans manned space launch in 2013: state media

China to launch manned spacecraft

Tiangong 1 Parked And Waiting As Shenzhou 10 Mission Prep Continues

Preventing 'Cyber Pearl Harbor'

Assange defends WikiLeaks two years after 'cablegate'

WikiLeaks suspect's guards describe him crying in jail

Manning tells court he 'fell apart' during detention

Making sustainability policies sustainable

S. America upbeat on energy growth in 2013

Need for clean energy 'more urgent than ever': IEA

Japan's Hitachi, Mitsubishi Heavy to merge power units

Argonne National Lab Selected as DOE's Batteries and Energy Storage Hub

Numerical study suggests subsea injection of chemicals didn't prevent oil from rising to sea surface

Report decries Big Oil's 'oily grasp' on Canada

Oil prices mixed after US, China data

Australia reviews military base security

Raytheon wins first contract for new lightweight GPS anti-jam capability for land systems

Dressing U.S. Troops to Safeguard Against Insect Attacks

BAE, EXPAL team up for munitions deal

How 'transparent' is graphene?

A graphene nanotube hybrid

Penn Researchers Make Flexible, Low-voltage Circuits Using Nanocrystals

King's College London finds rainbows on nanoscale

Squirrels and Birds Inspire Researchers to Create Deceptive Robots

Engineering professor looks to whirligig beetle for bio inspired robots

Robot buddy to keep Japan astronaut company

Study of risks to humankind proposed

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement