. Nano Technology News .

Nanotechnology helps scientists keep silver shiny
by Staff Writers
Tampa, FL (SPX) Oct 29, 2012

By running a series of surface-limited chemical reactions, researchers can build the protective film one atom-thick layer at a time. The films Phaneuf and his team have tested are under 100 nanometers thick, less than 1/1000th the thickness of a human hair.

There are thousands of silver artifacts in museum collections around the world, and keeping them shiny is a constant challenge. So scientists are using new technology to give conservators a helping hand.

A team of researchers led by Ray Phaneuf, a professor of materials science and engineering at the University of Maryland, College Park, has partnered with The Walters Art Museum in Baltimore to investigate less labor-intensive ways to protect silver artifacts from tarnishing.

The new techniques, which might keep silver surfaces shiny for longer than traditional methods, could help ensure that historically important artifacts are preserved for future generations to learn from and enjoy. The researchers will present their work at the AVS 59th International Symposium and Exhibition, held Oct. 28 - Nov. 2, in Tampa, Fla.

Silver tarnishes when hydrogen sulfide in the air reacts with the silver, forming an unsightly black layer of silver sulfide on the surface of the artifact. If the tarnish appears on Grandma's silver flatware set, a little polisher and some elbow grease will easily remove it. But polishing, which works by dissolving or grinding away the silver-sulfide layer, can also remove some of the underlying silver, an undesirable outcome for priceless works of art.

Currently museum conservators can apply a thin layer of nitrocellulose lacquer to protect the silver. The coating is often hand-painted by a trained specialist and must be removed and reapplied an average of every thirty years. Phaneuf notes that it is difficult to apply a layer of even thickness over an entire piece, and the process of applying, removing, and reapplying the film is time-consuming.

"We did a quick back-of-the envelope calculation and found that for a big museum like the Metropolitan Museum of Art in New York, treating their entire silver collection with nitrocellulose films would likely be a never-ending task," says Phaneuf.

A quicker conservation method is to display silver pieces in an enclosed chamber with filtered air, but the chambers often leak, are expensive to install and maintain, and putting an artifact behind glass may prevent visitors from seeing the object up-close and from multiple angles.

Phaneuf and his colleagues are investigating a technique that could overcome some of the shortcomings of current preservation methods. Called atomic layer deposition (ALD), the process gives scientists atomic-level control over the thickness of a transparent oxide film that they grow on the surface of silver objects.

By running a series of surface-limited chemical reactions, researchers can build the protective film one atom-thick layer at a time. The films Phaneuf and his team have tested are under 100 nanometers thick, less than 1/1000th the thickness of a human hair.

Phaneuf and his colleagues are currently experimenting by applying ALD films to highly uniform silver test wafers. The uniformity of the wafers allows the researchers to control variables, such as the composition of the silver, in order to create a model of the tarnishing kinetics as sulfur diffuses through the ALD film.

"This is when we get to put on our physicists' hats," Phaneuf says of simplifying the test cases and building a predictive model. The test case results showed two components to the concentration profile, indicating a faster rate of sulfur diffusion through tiny pinholes in the protective oxide film. The researchers are now experimenting with multilayer films that plug these pinholes.

Before the researchers use ALD on prized museum pieces, they will need to demonstrate that the coating can be removed without damaging the artifact, and that the thin film will have a minimal effect on the aesthetic look of the silver.

In terms of appearance, ALD films may have another advantage over conventional nitrocellulose lacquer, which can yellow with age. Phaneuf and his colleagues are performing tests to measure how the thickness of the ALD films affects the way silver reflects light.

"Untreated silver beautifully reflects white light," Phaneuf explains. "You don't want the protective film to create interference effects that make it look blue or yellow." The expert eyes of art conservators will also help the researchers judge their success in this respect.

Phaneuf says that collaborating museums may soon allow the team to test their methods on forgeries of silver artifacts, and by year's end the team should be working with genuine pieces.

"There is no shortage of complex objects this method might be applied to," Phaneuf notes. "There is a lot of interest now in the conservation community in how nanotechnology and other high technologies can be used to preserve art."


Related Links
American Institute of Physics
AVS Symposium
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear


Scientists use molecular layers to study nanoscale heat transfer
Tampa, FL (SPX) Oct 29, 2012
Scientific research has provided us with a fundamental understanding of how light (via photons) and electricity (via electrons) move within and between materials at the micrometer or nanometer levels, making possible a wide variety of miniature devices such as transistors, optical sensors and microelectromechanical systems (MEMS). However, man's knowledge of micro- and nanoscale heat flow is rud ... read more

China Southern 3Q profits tumble 29 percent

Youngest Boeing B-52 Stratofortress Achieves 50 Years of Service

'Frankenstorm' disrupts US-bound flights from Britain

Hurricane Sandy grounds 12,000 US flights

China to launch 11 meteorological satellites by 2020

China makes progress in spaceflight research

Patience for Tiangong

China launches civilian technology satellites

US, Canada launch joint cybersecurity plan

Israel, U.S. brace for cyber assaults

Auditor warns Canada lagging on cyber security

Raytheon acquires technology development firm Teligy

Poland hails carbon allowances compromise

Global headwinds trouble India's Suzlon

China energy giant Sinopec sees Q3 net profit fall

Japan eyes Mozambique for cheaper coal, gas

Oil prices drop as hurricane blasts US East Coast

Obama shows support for natural gas

Crude down in Asia as hurricane threatens US

Utah oil sands projects gets green light

Elbit To Supply Brazil Remote Controlled Weapon Stations

Northrop Grumman Employs FACE Standards to Bring Enhanced Avionics to the Warfighter

Lockheed Martin Demonstrates JAGM Dual-Mode Seeker in High-Speed Captive Flight Tests

Lockheed Martin Wins Contract To Increase Tactical Vehicle Safety With Autonomous Technology

Strengthening fragile forests of carbon nanotubes for new MEMS applications

A 'nanoscale landscape' controls flow of surface electrons on a topological insulator

Nanotechnology helps scientists keep silver shiny

Scientists use molecular layers to study nanoscale heat transfer

Canada, NASA in space rover talks

Training Your Robot the PaR-PaR Way

Northrop Grumman Remotec to Begin Delivering Titus Robot in December

Japan robot suit offers hope for nuclear work

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement