Subscribe free to our newsletters via your
  Nano Technology News  




Subscribe free to our newsletters via your




















NANO TECH
New Nano Devices Could Withstand Extreme Environments in Space
by Staff Writers
Stanford CA (SPX) Mar 30, 2017


Professor Debbie Senesky, left, works with graduate student Caitlin Chapin on electronics that can resist extreme environments. Image courtesy L.A. Cicero.

Behind its thick swirling clouds, Venus is hiding a hot surface pelted with sulfuric acid rains. At 480C, the planet's atmosphere would fry any of today's electronics, posing a challenge to scientists hoping to study this extreme environment.

Researchers at the Stanford Extreme Environment Microsystems Laboratory, or the XLab, are on a mission to conquer these conditions. By developing heat-, corrosion- and radiation-resistant electronics, they hope to move research into extreme places in the universe - including here on Earth. And it all starts with tiny, nano-scale slices of material.

"I think it's important to understand and gain new insight through probing these unique environments," said Debbie Senesky, assistant professor of aeronautics and astronautics and principle investigator at the XLab.

Senesky hopes that by studying Venus we can better understand our own world. While it's hard to imagine that hot and corrosive Venus ever looked like Earth, scientists think that it used to be much cooler. Billions of years ago, a runaway greenhouse effect may have caused the planet to absorb far more heat than it could reflect, creating today's scorching conditions. Understanding how Venus got so hot can help us learn about our atmosphere.

"If we can understand the history of Venus, maybe we can understand and positively impact the future evolution of our own habitat," said Senesky.

What's more, devices that can withstand the rigors of space travel could also monitor equally challenging conditions here on Earth, such as in our cars.

Scorching Heat
One hurdle to studying extreme environments is the heat. Silicon-based semiconductors, which power our smartphones and laptops, stop working at about 300 C. As they heat up, the metal parts begin to melt into neighboring semiconductor and don't move electricity as efficiently.

Ateeq Suria, graduate student in mechanical engineering, is one of the people at the XLab working to overcome this temperature barrier. To do that, he hopped into his bunny suit - overall lab apparel that prevents contamination - and made use of ultra-clean work spaces to create an atoms-thick, heat-resistant layer that can coat devices and allow them to work at up to 600C) in air.

"The diameter of human hair is about 70 micrometers," said Suria. "These coatings are about a hundredth of that width."

Suria and others at the XLab are working to improve these nano-devices, testing materials at temperatures of up to 900C. For space electronics, it's a key step in understanding how they survive for long periods of time. Although a device might not be exposed to such temperature extremes in space, the test conditions rapidly age materials, indicating how long they could last.

The team at XLab tests materials and nano-devices they create either in-house in high-temperature probe stations or in a Venus simulator at the NASA Glenn Research Center in Cleveland, Ohio. That simulator mimics the pressure, chemistry and temperature of Venus. To mirror the effects of space radiation, they also test materials at Los Alamos National Laboratory and at NASA Ames Research Center.

Radiation Damage
More than just surviving on Venus, getting there is important, too. Objects in space are pounded by a flurry of gamma and proton radiation that knock atoms around and degrade materials. Preliminary work at the XLab demonstrates that sensors they've developed could survive up to 50 years of radiation bombardment while in Earth's orbit.

Senesky said that if their fabrication process for nano-scale materials proves effective it could get incorporated into technologies being launched into space.

"I'm super excited about the possibility of NASA adopting our technology in the design of their probes and landers," said Senesky.

Hot Electronics at Home
While space is an exciting frontier, Suria said that interest in understanding car engines initially fueled this research. Inside an engine, temperatures reach up to 1,000C) degrees, and the outer surface of a piston is 600C). Current technology to monitor and optimize engine performance can't handle this heat, introducing error because measuring devices have to be placed far away from the pistons.

Electronics designed to survive the intense conditions of space could be placed next to the engine's pistons to directly monitor performance and improve efficiency.

"You just put the sensor right in the engine and get much better information out," said Suria.

Other fiery, high pressure earthbound environments that would benefit from these robust electronics include oil and gas wellbores, geothermal vents, aircraft engines, gas turbines and hypersonic structures.

NANO TECH
3-D printing turns nanomachines into life-size workers
Hanover NH (SPX) Mar 23, 2017
Using advanced 3-D printing, Dartmouth College researchers have unlocked the key to transforming microscopic nanorings into smart materials that perform work at human-scale. Nanomachines can already deliver medication and serve as computer memories at the tiny nanometer scale. By integrating a 3-D printing technique pioneered at Dartmouth's Ke Functional Materials Group, researchers may un ... read more

Related Links
Stanford University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
Super Pressure Balloon Flight Enables Pioneering Infrasound Study

Northrop Grumman to upgrade French Hawkeye aircraft

Airbus military plane clients maintain delay penalties: source

Saab to perform operational support for Swedish Gripens

NANO TECH
Yuanwang fleet to carry out 19 space tracking tasks in 2017

China Develops Spaceship Capable of Moon Landing

Long March-7 Y2 ready for launch of China's first cargo spacecraft

China Seeks Space Rockets Launched from Airplanes

NANO TECH
Esri contracted for embedded training of intelligence agency personnel

With new iPhone, Trump still a target for hackers

VPN users in China megacity Chongqing face fines

UK targets WhatsApp encryption after London attack

NANO TECH
How a young-looking lunar volcano hides its true age

Surviving the long dark night of the Moon

Team Indus To Send Seven Experiments To The Moon Including Three From India

Sun Devils working for a chance to induce photosynthesis on our lunar neighbor

NANO TECH
New Nano Devices Could Withstand Extreme Environments in Space

3-D printing turns nanomachines into life-size workers

Scientists created nanopowders for the synthesis of new aluminum alloys

Light-controlled gearbox for nanomachines

NANO TECH
U.S. may sell Stryker vehicles to Latin American countries

Asian nation orders targeting and surveillance pods from IAI

German state buys first Survivor R vehicle from Rheinmetall

U.S. Army picks AM General for Humvee sale to Iraq

NANO TECH
New Nano Devices Could Withstand Extreme Environments in Space

3-D printing turns nanomachines into life-size workers

Scientists created nanopowders for the synthesis of new aluminum alloys

Light-controlled gearbox for nanomachines

NANO TECH
AM General, Army to test autonomous vehicle system

Printable device points toward sensor-laden robot skin

Tech world debate on robots and jobs heats up

Quadruped robot exhibits spontaneous changes in step with speed




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement