Subscribe free to our newsletters via your
  Nano Technology News  

Subscribe free to our newsletters via your

New record in nanoelectronics at ultralow temperatures
by Staff Writers
Espoo, Finland (SPX) Jan 29, 2016

Illustration of single-electron tunnelling through an oxide tunnel barrier in the primary thermometer device. The measured tunnel current is used in determining the absolute electron temperature. Image courtesy VTT. For a larger version of this image please go here.

The first ever measurement of the temperature of electrons in a nanoelectronic device a few thousandths of a degree above absolute zero was demonstrated in a joint research project performed by VTT Technical Research Centre of Finland Ltd, Lancaster University, and Aivon Ltd. The team managed to make the electrons in a circuit on a silicon chip colder than had previously been achieved.

Although it has long been possible to cool samples of bulk metals even below 1 millikelvin, it has proved very difficult to transfer this temperature to electrons in small electronic devices, mainly because the interaction between the conducting electrons and the crystal lattice becomes extremely weak at low temperatures.

By combining state-of-the-art micro and nanofabrication and pioneering measurement approaches the research team realized ultralow electron temperatures reaching 3.7 millikelvin in a nanoelectronic electron tunnelling device. A scientific article on the subject was published in Nature Communications on Jan. 27, 2016.

This breakthrough paves the way towards sub-millikelvin nanoelectronic circuits and is another step on the way to develop new quantum technologies including quantum computers and sensors. Quantum technologies use quantum mechanical effects to outperform any possible technology based only on classical physics. In general, many high sensitivity magnetic field sensors and radiation detectors require low temperatures simply to reduce detrimental thermal noise.

This work marks the creation of a key enabling technology which will facilitate R and D in nanoscience, solid-state physics, materials science and quantum technologies. The demonstrated nanoelectronic device is a so-called primary thermometer, i.e., a thermometer which requires no calibration. This makes the technology very attractive for low temperature instrumentation applications and metrology.

The breakthrough was made possible by bringing together internationally-leading groups and experts each of whom have their own track record of achievements in the fields of nanotechnologies and high performance sensors (VTT Technical Research Centre of Finland Ltd), custom low-noise electronics (Aivon Ltd, Finland) and ultralow temperature refrigeration and device characterization (Ultra Low Temperature Physics group and Quantum Technology Centre at Lancaster).

VTT is looking into possibilities together with BlueFors Cryogenics to commercialise the primary thermometer component.

Dr Mika Prunnila, Nanoelectronics Research Team Leader at VTT, said: "Creating a new measurement tool for calibration-free thermometry is a big step forward. This is an important device for quantum machines which need the low temperature environment in order to work and the device is available right now for benchmarking different systems."

Dr Rich Haley, Head of Ultra Low Temperature Physics at Lancaster, said: "This is a notable achievement in that the team has finally broken through the 4 millikelvin barrier, which has been the record in such structures for over 15 years."

Dr Jon Prance of the Lancaster Quantum Technology Centre said: "Not only have we measured the coldest ever nanoelectronics temperature, but we have also demonstrated techniques which open the door to even lower temperatures."

Research article: "Nanoelectronic primary thermometry below 4?mK" Nature Communications, DOI: 10.1038/NCOMMS10455


Related Links
VTT Technical Research Centre of Finland
Nano Technology News From
Computer Chip Architecture, Technology and Manufacture

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Microwaved nanotubes come up clean
Houston TX (SPX) Jan 26, 2016
Amid all the fancy equipment found in a typical nanomaterials lab, one of the most useful may turn out to be the humble microwave oven. A standard kitchen microwave proved effective as part of a two-step process invented at Rice and Swansea universities to clean carbon nanotubes. Basic nanotubes are good for many things, like forming into microelectronic components or electrically conducti ... read more

Graphene composite may keep wings ice-free

Russia's strategic bomber PAK DA may takeoff earlier than expected

Iran to buy 114 Airbuses to revamp ageing fleet

NASA-Funded Balloon Launches to Study Sun

China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

China Plans More Than 20 Space Launches in 2016

Anonymous messaging app stirs controversy in Israel

US toughens background check process after major hack

U.S. Air Force cyberspace weapon achieves operational status

Elbit to provide cybersecurity simulator to Asian country

Australian farmers to benefit from renewables boost

War Between Saudi Arabia And Iran Could Send Oil Prices To $250

China 2015 electricity output down 0.2 percent

Clean energy to conquer new markets in 2016

Corvus Energy announces new performance specifications for lithium ion battery systems

Creation of Jupiter interior, a step towards room temp superconductivity

Non-platinum catalysts for fuel cells remain a mystery

Researchers prove surprising chemistry inside a potential breakthrough battery

DARPA program aims to develop neural-digital connection

Telephonics to supply surveillance vehicles for U.S. border

General Dynamics to support U.S. Army Stryker program

Lockheed Martin to provide Pakistan with Target Sight Systems

Inspiration for fluorescent nanomaterials was taken from plant antenna

Self-stacking nanogrids

Microwaved nanotubes come up clean

New process enables easier isolation of carbon nanotubes

Microbots individually controlled using 'mini force fields'

Russian Scientists Developing Avatar Robot for Extraterrestrial Exploration

NASA Marshall Center to Host FIRST Robotics Kick-Off at USSRC

Will computers ever truly understand what we're saying

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.