. Nano Technology News .




.
NANO TECH
Quick-Cooking Nanomaterials Make Tomorrow's Solid-State Air Conditioners and Refrigerators
by Staff Writers
Troy NY (SPX) Jan 13, 2012

These pellets exhibit properties better than the hard-to-make thermoelectric materials currently available in the marketplace. Additionally, this new method for creating the doped pellets is much faster, easier, and cheaper than conventional methods of making thermoelectric materials.

Engineering researchers at Rensselaer Polytechnic Institute have developed a new method for creating advanced nanomaterials that could lead to highly efficient refrigerators and cooling systems requiring no refrigerants and no moving parts. The key ingredients for this innovation are a dash of nanoscale sulfur and a normal, everyday microwave oven.

At the heart of these solid-state cooling systems are thermoelectric materials, which can convert electricity into a range of different temperatures-from hot to cold. Thermoelectric refrigerators employing these principles have been available for more than 20 years, but they are still small and highly inefficient.

This is largely because the materials used in current thermoelectric cooling devices are expensive and difficult to make in large quantities, and do not have the necessary combination of thermal and electrical properties.

A new study, published in the journal Nature Materials, overcomes these challenges and opens the door to a new generation of high-performance, cost-effective solid state refrigeration and air conditioning.

Rensselaer Professor Ganpati Ramanath led the study, in collaboration with colleagues Theodorian Borca-Tasciuc and Richard W. Siegel.

See a video of Ramanath explaining the study here.

Driving this research breakthrough is the idea of intentionally contaminating, or doping, nanostructured thermoelectric materials with barely-there amounts of sulfur. The doped materials are obtained by cooking the material and the dopant together for few minutes in a store-bought $40 microwave oven.

The resulting powder is formed into pea-sized pellets by applying heat and pressure in a way that preserves the properties endowed by the nanostructuring and the doping.

These pellets exhibit properties better than the hard-to-make thermoelectric materials currently available in the marketplace. Additionally, this new method for creating the doped pellets is much faster, easier, and cheaper than conventional methods of making thermoelectric materials.

"This is not a one-off discovery. Rather, we have developed and demonstrated a new way to create a whole new class of doped thermoelectric materials with superior properties," said Ramanath, a faculty member in the Department of Materials Science and Engineering at Rensselaer.

"Our findings truly hold the potential to transform the technology landscape of refrigeration and make a real impact on our lives."

Results of the study are detailed in the Nature Materials paper "A new class of doped nanobulk high figure of merit thermoelectrics by scalable bottom-up assembly." See the paper online here.

Trying to engineer thermoelectric materials is somewhat like playing a game of "tug of war," Ramanath said. Researchers endeavor to control three separate properties of the material: electrical conductivity, thermal conductivity, and Seebeck coefficient. Manipulating one of these properties, however, necessarily affects the other two.

This new study demonstrates a new way to minimize the interdependence of these three properties by combining doping and nanostructuring in well-known thermoelectric materials such as tellurides and selenides based on bismuth and antimony.

The goal of tweaking these three properties is to create a thermoelectric material with a high figure of merit, or ZT, which is a measure of how efficient the material is at converting heat to electricity. The new pea-sized pellets of nanomaterials developed by the Rensselaer team demonstrated a ZT of 1 to 1.1 at room temperature.

Since such high values are obtained even without optimizing the process, the researchers are confident that higher ZT can be obtained with some smart engineering.

"It's really amazing as to how nanostructures seasoned with just a few atoms of sulfur can lead to such superior thermoelectric properties of the bulk material made from the nanostructures, and allows us to reap the benefits of nanostructuring on a macroscale," Ramanath said.

An important facet of the discovery is the ability to make both p-type (positive charge) and n-type (negative charge) thermoelectric nanomaterials with a high ZT. Up until now, researchers around the world have only been able to make large quantities of p-type materials with high ZT.

Additionally, the new study shows the Rensselaer research team can make batches of 10 to 15 grams (enough to make several pea-sized pellets) of the doped nanomaterial in two to three minutes with a microwave oven. Larger quantities can be produced using industrial-sized microwaves ovens.

"Our ability to scalably and inexpensively produce both p- and n-type materials with a high ZT paves the way to the fabrication of high-efficiency cooling devices, as well as solid-state thermoelectric devices for harvesting waste heat or solar heat into electricity," said Borca-Tasciuc, professor in the Department of Mechanical, Aerospace, and Nuclear Engineering at Rensselaer.

"This is a very exciting discovery because it combines the realization of novel and useful thermoelectric properties with a demonstrated processing route forward to industrial applications," said Siegel, the Robert W. Hunt Professor of Materials Science and Engineering at Rensselaer.

Rensselaer graduate student Rutvik J. Mehta carried out this work for his doctoral thesis. Mehta, Ramanath, and Borca-Tasciuc have filed a patent and formed a new company, ThermoAura Inc., to further develop and market the new thermoelectric materials technology.

Mehta has since graduated and is now a post-doctoral associate at Rensselaer. He also serves as president of ThermoAura.

Beyond refrigerators and air conditioning, the researchers envision this technology could one day be used to cool computer chips.

Along with Ramanath,Borca-Tasciuc, Siegel, and Mehta, co-authors of the paper are Rensselaer graduate students Yanliang Zhang, Chinnathambi Karthik, and Binay Singh.

This research is funded by support from the National Science Foundation (NSF); IBM through the Rensselaer Nanotechnology Center; and the U.S. Department of Energy through the S3TEC Energy Frontiers Research Center at the Massachusetts Institute of Technology (MIT).

Related Links
Rensselaer Polytechnic Institute
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



NANO TECH
ORNL experiments prove nanoscale metallic conductivity in ferroelectrics
Oak Ridge TN (SPX) Jan 11, 2012
The prospect of electronics at the nanoscale may be even more promising with the first observation of metallic conductance in ferroelectric nanodomains by researchers at Oak Ridge National Laboratory. Ferroelectric materials, which switch their polarization with the application of an electric field, have long been used in devices such as ultrasound machines and sensors. Now, discoveries ab ... read more


NANO TECH
India protests EU airline emissions tax

Airbus agrees A380 deal with Hong Kong Airlines: reports

Slovenian adventurer embarks on eco-friendly world trip

Chinese carriers won't pay EU carbon charge: group

NANO TECH
China launches Ziyuan III satellite

Spying on Tiangong

China's space ambitions ally glory with pragmatism

Why The X-37B Is Not Spying On Tiangong

NANO TECH
US probes alleged India hacking of commission

Anonymous targets Finland over anti-piracy efforts

US, British officials victims of Stratfor hack: press

Virus could disable cyber attack source

NANO TECH
EPA Web tool shows greenhouse gas culprits

S. America energy demand drives investment

New FERC Ruling Provides Relief To Besieged Power Grids

China looks at carbon tax, official says in US

NANO TECH
Ukraine cuts Gazprom import volumes

Rice's 'quantum critical' theory gets experimental boost

Saudi oil output 'stretched to the limit'

Iran warns Gulf states not to make up for oil ban

NANO TECH
Raytheon Delivers First Upgraded Patriot Radar to Kuwait

Lockheed Martin to Upgrade USAF C-130 Training Devices

LONGBOW Receives contract for Apache LONGBOW Block III Radar and Data Link Systems

Raven Industries to Acquire Vista Research

NANO TECH
Hydrogen advances graphene use

Magnetic actuation enables nanoscale thermal analysis

Graphene quantum dots: The next big small thing

Optical nanoantennas enable efficient multipurpose particle manipulation

NANO TECH
Open-source robotic surgery platform going to top medical research labs

Leaping lizards and dinosaurs inspire robot design

Greying Singapore taps robots, games in rehab

Leaping lizards tip tails for soft landing


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement