Subscribe free to our newsletters via your
  Nano Technology News  


Subscribe free to our newsletters via your




















NANO TECH
Scientists take key step toward custom-made nanoscale chemical factories
by Staff Writers
Berkeley CA (SPX) Feb 09, 2016


This image shows a natural atomic-scale protein structure (middle) in a polyhedral bacterial microcompartment (left), and an engineered structure (right) that binds an iron-sulfur cluster (in blue), giving it a new function. The engineered protein was produced in E. coli bacteria--the background image shows a scanning electron micrograph image of E. coli. Image courtesy Berkeley Lab, National Institutes of Health. For a larger version of this image please go here.

Scientists have for the first time reengineered a building block of a geometric nanocompartment that occurs naturally in bacteria. They introduced a metal binding site to its shell that will allow electrons to be transferred to and from the compartment. This provides an entirely new functionality, greatly expanding the potential of nanocompartments to serve as custom-made chemical factories.

Scientists hope to tailor this new use to produce high-value chemical products, such as medicines, on demand.

The sturdy nanocompartments, which are polyhedral shells composed of triangle-shaped sides and resemble 20-sided dice, are formed by hundreds of copies of just three different types of proteins. Their natural counterparts, known as bacterial microcompartments or BMCs, encase a wide variety of enzymes that carry out highly specialized chemistry in bacteria.

Researchers at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) devised synthetic shell structures derived from those found in a rod-shaped, ocean-dwelling bacterium, Haliangium ochraceum, and reengineered one of the shell proteins to serve as a scaffold for an iron-sulfur cluster found in many forms of life. The cluster is known as a "cofactor" because it can serve as a helper molecule in biochemical reactions.

BMC-based shells are tiny, durable and naturally self-assemble and self-repair, which makes them better-suited for a range of applications than completely synthetic nanostructures.

"This is the first time anyone has introduced functionality into a shell. We thought the most important functionality to introduce was the ability to transfer electrons into or out of the shell," said Cheryl Kerfeld, a structural biologist at Berkeley Lab and corresponding author in this study. Kerfeld's research group focuses on BMCs. Kerfeld holds joint appointments with Berkeley Lab's Molecular Biophysics and Integrated Bioimaging (MBIB) Division, UC Berkeley and the MSU-DOE Plant Research Laboratory at Michigan State University (MSU).

"That greatly enhances the versatility of the types of chemistries you can encapsulate in the shell and the spectrum of products to be produced," she said. "Typically, the shells are thought of as simply passive barriers."

Researchers used X-rays at Berkeley Lab's Advanced Light Source (ALS) to show, in 3-D and at the atomic scale, how the introduced iron-sulfur cluster binds to the engineered protein.

Enzymes inside natural BMCs can convert carbon dioxide into organic compounds that can be used by the bacteria, isolate toxic or volatile compounds from the surrounding cell, and carry out other chemical reactions that provide energy for the cell.

In this study, researchers introduced the iron-sulfur cluster into the tiny pores in the shell building block. This engineered protein serves as an electron relay across the shell, which is key to controlling the chemical reactivity of substances inside the shell.

Clement Aussignargues, the lead author of the study and postdoctoral researcher in the MSU-DOE Plant Research Laboratory in Michigan, said, "The beauty of our system is that we now have all the tools, notably the crystallographic structure of the engineered protein, to modify the redox potential of the system - its ability to take in electrons (reduction) or give off electrons (oxidation).

"If we can control this, we can expand the range of chemical reactions we can encapsulate in the shell. The limit of these applications will be what we put inside the shells, not the shells themselves."

He added, "Creating a new microcompartment from scratch would be very, very complicated. That's why we're taking what nature put before us and trying to add to what nature can do."

To design the metal binding site, Kerfeld's group first had to solve the structures of the building blocks of the nanocompartment to use as the template for design. These building blocks self-assemble into synthetic shells, which measure just 40 nanometers, or billionths of a meter, in diameter. The natural form of the shells can be up to 12 times larger.

The iron-sulfur cofactor of the engineered protein, which was produced in E. coli bacteria, was very stable even when put through several redox cycles - a characteristic essential for future applications, Aussignargues said. "The engineered protein was also more stable than its natural counterpart, which was a big surprise," he said. "You can treat it with things that normally make proteins fall apart and unwind."

A major challenge in the study was to prepare the engineered protein in an oxygen-free environment to form tiny crystals that best preserve their structure and their cofactor for X-ray imaging, Kerfeld said.

The crystals were prepared in an air-sealed glovebox at MSU, frozen, and then shipped out for X-ray studies at Berkeley Lab's ALS and SLAC National Accelerator Laboratory's Stanford Synchrotron Radiation Lightsource (SSRL).

In follow-up work, the research team is exploring how to incorporate different metal centers into BMC shells to access a different range of chemical reactivity, she said.

"I'm working on incorporating a completely different metal center, which has a very positive reduction potential compared to the iron-sulfur cluster," said Jeff Plegaria, a postdoctoral researcher at the MSU-DOE Plant Research Laboratory who contributed to the latest study. "But it is the same sort of idea: To drive electrons in or out of the compartment."

He added, "The next step is to encapsulate proteins that can accept electrons into the shells, and to use that as a probe to watch the electron transfer from the outside of the compartment to the inside." That will bring researchers closer to creating specific types of pharmaceuticals or other chemicals.

The study is now online in the Journal of the American Chemical Society. Other scientists involved in the study "Structure and Function of a Bacterial Microcompartment Shell Protein Engineered to Bind a [4Fe-4S] Cluster" were from MSU, The Pennsylvania State University and Brooklyn College. The work was supported by the U.S. DOE Office of Science, MSU AgBio Research and the European Union's PEPDIODE project.

.


Related Links
Lawrence Berkeley National Laboratory
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
New type of nanowires, built with natural gas heating
Ulsan, South Korea (SPX) Feb 02, 2016
A team of Korean researchers, affiliated with UNIST has recently pioneered in developing a new simple nanowire manufacturing technique that uses self-catalytic growth process assisted by thermal decomposition of natural gas. According to the research team, this method is simple, reproducible, size-controllable, and cost-effective in that lithium-ion batteries could also benefit from it. In ... read more


NANO TECH
F-35 deficiencies raise Pentagon concerns

Piloted, Electric Propulsion-Powered Experimental Aircraft Underway

Boeing selects UTC for U.S. Air Force C-17 landing gear

MBDA delivering ASRAAM missiles for F-35 fighters

NANO TECH
China Conducts Final Tests on Most Powerful Homegrown Rocket

Last Launch for Long March 2F/G

China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

NANO TECH
Amid cybersecurity warnings, Obama unveils 'action plan'

Twitter blocks 125,000 accounts in 'terrorist content' crackdown

Julian Assange: WikiLeaks' fugitive anti-hero

Israel's cyber sector blooms in the desert

NANO TECH
Online shopping about as "green" as a three dollar bill

Chinese utility makes major acquisition in German energy sector

Scientists say window to reduce carbon emissions is small

Germany says carbon emissions down sharply in 2014

NANO TECH
Scientists create laser-activated superconductor

Canadian physicists discover new properties of superconductivity

Phosphine as a superconductor? Sure, but the story may be complicated

Researchers propose high-efficiency wireless power transfer system

NANO TECH
Russia testing Bumerang armored personnel carrier

Philippines officially marks receipt of U.S. armored vehicles

West's advantage in military tech 'eroding': think-tank

Telephonics to support electronic countermeasures for US Marines

NANO TECH
Nanoscale cavity strongly links quantum particles

New type of nanowires, built with natural gas heating

Nanosheet growth technique could revolutionize nanomaterial production

New record in nanoelectronics at ultralow temperatures

NANO TECH
Chip could bring deep learning to mobile devices

Arlington Capital Partners buying iRobot business unit

Cockroach inspires robot that squeezes through cracks

Russia launches ambitious cosmic robotics project




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.