Subscribe free to our newsletters via your
  Nano Technology News  


Subscribe free to our newsletters via your




















NANO TECH
Self-stacking nanogrids
by Staff Writers
Boston MA (SPX) Jan 26, 2016


On the top row are two images of a nanomesh bilayer of PDMS cylinders in which the top layer is perpendicular to the complex orientation of the bottom layer. The bottom images show well-ordered nanomesh patterns of PDMS cylinders. The images on the right show zoomed-in views of the images on the left. Image courtesy of the researchers

Since the 1960s, computer chips have been built using a process called photolithography. But in the past five years, chip features have gotten smaller than the wavelength of light, which has required some ingenious modifications of photolithographic processes. Keeping up the rate of circuit miniaturization that we've come to expect - as predicted by Moore's Law - will eventually require new manufacturing techniques.

Block copolymers, molecules that spontaneously self-assemble into useful shapes, are one promising alternative to photolithography. In a new paper in the journal Nature Communications, MIT researchers describe the first technique for stacking layers of block-copolymer wires such that the wires in one layer naturally orient themselves perpendicularly to those in the layer below.

The ability to easily produce such "mesh structures" could make self-assembly a much more practical way to manufacture memory, optical chips, and even future generations of computer processors.

"There is previous work on fabricating a mesh structure - for example our work," says Amir Tavakkoli, a postdoc in MIT's Research Laboratory of Electronics and one of three first authors on the new paper. "We used posts that we had fabricated by electron-beam lithography, which is time consuming. But here, we don't use the electron-beam lithography. We use the first layer of block copolymer as a template to self-assemble another layer of block copolymer on top of it."

Tavakkoli's co-first-authors on the paper are Sam Nicaise, a graduate student in electrical engineering, and Karim Gadelrab, a graduate student in materials science and engineering. The senior authors are Alfredo Alexander-Katz, the Walter Henry Gale Associate Professor of Materials Science and Engineering; Caroline Ross, the Toyota Professor of Materials Science and Engineering; and Karl Berggren, a professor of electrical engineering.

Unhappy couples
Polymers are long molecules made from basic molecular units strung into chains. Plastics are polymers, and so are biological molecules like DNA and proteins. A copolymer is a polymer made by joining two different polymers.

In a block copolymer, the constituent polymers are chosen so that they're chemically incompatible with each other. It's their attempts to push away from each other - both within a single polymer chain and within a polymer film - that causes them to self-organize.

In the MIT researchers' case, one of the constituent polymers is carbon-based, the other silicon-based. In their efforts to escape the carbon-based polymer, the silicon-based polymers fold in on themselves, forming cylinders with loops of silicon-based polymer on the inside and the other polymer bristling on the outside. When the cylinders are exposed to an oxygen plasma, the carbon-based polymer burns away and the silicon oxidizes, leaving glass-like cylinders attached to a base.

To assemble a second layer of cylinders, the researchers simply repeat the process, albeit using copolymers with slightly different chain lengths. The cylinders in the new layer naturally orient themselves perpendicularly to those in the first.

Chemically treating the surface on which the first group of cylinders are formed will cause them to line up in parallel rows. In that case, the second layer of cylinders will also form parallel rows, perpendicular to those in the first.

But if the cylinders in the bottom layer are allowed to form haphazardly, snaking out into elaborate, looping patterns, the cylinders in the second layer will maintain their relative orientation, creating their own elaborate, but perpendicular, patterns.

The orderly mesh structure is the one that has the most obvious applications, but the disorderly one is perhaps the more impressive technical feat. "That's the one the materials scientists are excited about," Nicaise says.

Whys and wherefores
Glass-like wires are not directly useful for electronic applications, but it might be possible to seed them with other types of molecules, which would make them electronically active, or to use them as a template for depositing other materials. The researchers hope that they can reproduce their results with more functional polymers. To that end, they had to theoretically characterize the process that yielded their results. "We use computer simulations to understand the key parameters controlling the polymer orientation," Gadelrab says.

What they found was that the geometry of the cylinders in the bottom layer limited the possible orientations of the cylinders in the upper layer. If the walls of the lower cylinders are too steep to permit the upper cylinders from fitting in comfortably, the upper cylinders will try to find a different orientation.

It's also important that the upper and lower layers have only weak chemical interactions. Otherwise, the upper cylinders will try to stack themselves on top of the lower ones like logs on a pile.

Both of these properties - cylinder geometry and chemical interaction - can be predicted from the physics of polymer molecules. So it should be possible to identify other polymers that will exhibit the same behavior.

.


Related Links
Massachusetts Institute of Technology
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
FAU researchers show how mother-of-pearl is formed from nanoparticles
Erlangen, Germany (SPX) Jan 20, 2016
Materials scientists at FAU have shown for the first time that the mother-of-pearl in clam shells does not form in a crystallisation process but is a result of the aggregation of nanoparticles within an organic matrix. This could lead to a better understanding of the structure of biomaterials which may be useful in the development of new high-performance ceramics. The findings of the research gr ... read more


NANO TECH
Iran to buy 114 Airbuses to revamp ageing fleet

NASA-Funded Balloon Launches to Study Sun

Rockwell Collins to support Pakistani C-130 fleet

World View To Launch From Spaceport Tucson

NANO TECH
China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

China Plans More Than 20 Space Launches in 2016

NANO TECH
Chinese soldiers linked to US military hacking case: media

DHS signs research cooperation agreement with root9B

US spy chief's personal accounts hacked

McAfee shifts presidential run, unveils cybersecurity plan

NANO TECH
War Between Saudi Arabia And Iran Could Send Oil Prices To $250

Australian farmers to benefit from renewables boost

China 2015 electricity output down 0.2 percent

Clean energy to conquer new markets in 2016

NANO TECH
Self-heating lithium-ion battery could beat the winter woes

Many clean-tech subsidies should be greater

New finding may explain heat loss in fusion reactors

Creation of Jupiter interior, a step towards room temp superconductivity

NANO TECH
General Dynamics to support U.S. Army Stryker program

Lockheed Martin to provide Pakistan with Target Sight Systems

Saab unveils Sea Giraffe 4A AESA naval radar

Indian Army likely to get K9 Vajra-T howitzers

NANO TECH
FAU researchers show how mother-of-pearl is formed from nanoparticles

Shiny fish skin inspires nanoscale light reflectors

Nano-hybrid materials create magnetic effect

Nanodevice, build thyself

NANO TECH
Microbots individually controlled using 'mini force fields'

Russian Scientists Developing Avatar Robot for Extraterrestrial Exploration

NASA Marshall Center to Host FIRST Robotics Kick-Off at USSRC

Will computers ever truly understand what we're saying




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.