. Nano Technology News .

Team Creates MRI for the Nanoscale
by Staff Writers
New York NY (SPX) Feb 19, 2013

A tiny defect, called a nitrogen vacancy (NV), inside a diamond enabled researchers to detect the magnetic resonance of organic molecules in the same way an MRI produces images of a tissue or an organ.

Magnetic resonance imaging (MRI) reveals details of living tissues, diseased organs and tumors inside the body without x-rays or surgery. What if the same technology could peer down to the level of atoms? Doctors could make visual diagnoses of a person's molecules - examining damage on a strand of DNA, watching molecules misfold, or identifying a cancer cell by the proteins on its surface.

Now Dr. Carlos Meriles, associate professor of physics at The City College of New York, and an international team of researchers at the University of Stuttgart and elsewhere have opened the door for nanoscale MRI. They used tiny defects in diamonds to sense the magnetic resonance of molecules. They reported their results in the February 1 issue of Science.

"It is bringing MRI to a level comparable to an atomic force microscope," said Professor Meriles, referring to the device that traces the contours of atoms or tugs on a molecule to measure its strength. A nanoscale MRI could display how a molecule moves without touching it.

"Standard MRI typically gets to a resolution of 100 microns," about the width of a human hair, said Professor Meriles. "With extraordinary effort," he said, "it can get down to about 10 microns" - the width of a couple of blood cells. Nanoscale MRI would have a resolution 1,000 to 10,000 times better.

To try to pick up magnetic resonance on such a small scale, the team took advantage of the spin of protons in an atom, a property usually used to investigate quantum computing. In particular, they used minute imperfections in diamonds.

Diamonds are crystals made up almost entirely of carbon atoms. When a nitrogen atom lodges next to a spot where a carbon atom is missing, however, it creates a defect known as a nitrogen-vacancy (NV) center.

"These imperfections turn out to have a spin - like a little compass - and have some remarkable properties," noted Professor Meriles. In the last few years, researchers realized that these NV centers could serve as very sensitive sensors. They can pick up the magnetic resonance of nearby atoms in a cell, for example. But unlike the atoms in a cell, the NVs shine when a light is directed at them, signaling what their spin is. If you illuminate it with green light it flashes red back.

"It is a form of what is called optically detected magnetic resonance," he said. Like a hiker flashing Morse code on a hillside, the sensor "sends back flashes to say it is alive and well."

"The NV can also be thought of as an atomic magnet. You can manipulate the spin of that atomic magnet just like you do with MRI by applying a radio frequency or radio pulses," Professor Meriles explained. The NV responds. Shine a green light at it when the spin is pointing up and it will respond with brighter red light. A down spin gives a dimmer red light.

Professor Mireles has written on the theoretical underpinnings of the work and proposed the the project to the team, led by Professor Jorg Wrachtrup - a physicist at the University of Stuttgart in Germany - with the assistance of postdoctoral researcher Friedemann Reinhard and collaborators from the University of Bochum and the University of Science and Technology of China. Professor Wrachtrup heads a leading group studying such defects.

In the lab, graduate student Tobias Staudacher - the first author in this work - used NVs that had been created just below the diamond's surface by bombarding it with nitrogen atoms. The team detected magnetic resonance within a film of organic material applied to the surface, just as one might examine a thin film of cells or tissue.

"Ultimately," said Professor Meriles, "One will use a nitrogen-vacancy mounted on the tip of an atomic force microscope - or an array of NVs distributed on the diamond surface - to allow a scanning view of a cell, for example, to probe nuclear spins with a resolution down to a nanometer or perhaps better."

T. Staudacher, et al. Nuclear Magnetic Resonance Spectroscopy on a (5-Nanometer)3 Sample Volume, Science, 1 February 2013: 561 563. [DOI:10.1126/science.1231675


Related Links
The City College of New York
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear


Artificial atoms allow for magnetic resonance on individual cells
Barcelona, Spain (SPX) Feb 15, 2013
Researchers from the Institute of Photonic Sciences (ICFO), in collaboration with the CSIC and Macquarie University in Australia, have developed a new technique, similar to the MRI but with a much higher resolution and sensitivity, which has the ability to scan individual cells. In an article published in Nature Nanotech, and highlighted by Nature, ICFO Prof. Romain Quidant explains how th ... read more

NASA Seeks It All: High Lift, Low Drag

Eurocopter touts Mexico, India moves

France confident of selling Rafale jets to UAE

Next Phase of Modernizing B-2 Defensive Systems Starts

Welcome Aboard Shenzhou 10

Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

China's PLA controls hackers: US IT security firm

China's PLA controls hackers: US IT security firm

Facebook network hit by 'sophisticated' attack

Activist takes Hong Kong ID card database offline

Cities can reduce greenhouse gas emissions by 70 percent

Bulgarians protest high energy costs

Genscape Announces Strategic Partnership with Murex to Create Supply of QAP-A RINS

Diageo Transitions to 100 Percent Renewable Electricity at its North American HQ

Southeast Asia key for LNG

BP vows to 'vigorously defend' itself at US oil spill trial

Turkey defies allies to pursue Iraqi Kurd energy ties

Romgaz lands option for Black Sea field

Bolstering the Front Line of Biological Warfare Response

Raytheon/Thales team wins contract for helicopter helmet mounted displays

Israel sends Turks EW systems despite rift

Military experts doubt Sweden's ability to defend itself

Team Creates MRI for the Nanoscale

Artificial atoms allow for magnetic resonance on individual cells

Giving transplanted cells a nanotech checkup

Boston College researchers' unique nanostructure produces novel 'plasmonic halos'

Robots with lift

Dry ice vacuum cleaner robot bound for Fukushima

Gas explosions enable soft robot to jump

Humans and robots work better together following cross-training

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement