Subscribe free to our newsletters via your
  Nano Technology News  




Subscribe free to our newsletters via your




















NANO TECH
Three magnetic states for each hole
by Staff Writers
Dresden, Germany (SPX) Feb 03, 2017


Researchers at the Helmholtz Zentrum Dresden-Rossendorf in Germany have calculated that the specific layout of four holes ("antidots") in a layer of cobalt will accommodate 15 different combinations for programming. Image courtesy HZDR.

Nanometer-scale magnetic perforated grids could create new possibilities for Computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in order to program its magnetic properties. His colleagues from the National University in Singapore produced the grid using a photolithographic process similar to that currently used in chip manufacture.

Approximately 250 nanometers sized holes, so-called antidots, were created at regular intervals - with interspaces of only 150 nanometers - in the cobalt layer. In order to be able to stably program it, the Singapore experts followed the Dresden design, which specified a metal layer thickness of approximately 50 nanometers.

At these dimensions the cobalt antidot grid displayed interesting properties: Dr. Bali's team discovered that with the aid of an externally applied magnetic field three distinct magnetic states around each hole could be configured. The scientists called these states "G", "C" and "Q". Dr. Bali: "Antidots are now in the international research spotlight. By optimizing the antidot geometry we were able to show that the spins, or the magnetic moments of the electrons, could be reliably programmed around the holes."

Building blocks for future logic
Since the individually programmable holes are situated in a magnetic metal layer, the grid geometry has potential use in computers that would work with spin-waves instead of electric current. "Spin-waves are similar to the so-called Mexican waves you see in a football stadium.

The wave propagates through the stadium, but the individual fans, in our case the electrons, stay seated", explains Dr. Bali. Logic chips utilizing such spin-waves would use far less power than today's processors, because no electrical current is involved.

Many magnetic states can be realized in the perforated grid so that the spin-waves can, for example, be assigned specific directions. This could allow for a higher processing speed in future logic chips.

"Our perforated grids could also operate as components for future circuits working with spin-waves", estimates Dr. Bali. Doctoral candidate, Tobias Schneider, is now investigating the dynamics developed by the spin-waves in such perforated grids. Among other aspects he is participating in the development of special computer programs making possible the complex calculation of the magnetic states in perforated grids.

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Helmholtz-Zentrum Dresden-Rossendorf
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
NIST updates 'sweet' 1950s separation method to clean nanoparticles from organisms
Washington DC (SPX) Jan 27, 2017
Sometimes old-school methods provide the best ways of studying cutting-edge tech and its effects on the modern world. Giving a 65-year-old laboratory technique a new role, researchers at the National Institute of Standards and Technology (NIST) have performed the cleanest separation to date of synthetic nanoparticles from a living organism. The new NIST method is expected to significantly ... read more


NANO TECH
Advanced robotic bat's flight characteristics simulates the real thing

Pentagon chief orders review of F-35 fighter program

State Dept. approves $525 million aerostat sale to Saudi Arabia

Kazakhstan orders Russian Mi-35M helicopters

NANO TECH
China looks to Mars, Jupiter exploration

China's first cargo spacecraft to leave factory

China launches commercial rocket mission Kuaizhou-1A

China Space Plan to Develop "Strength and Size"

NANO TECH
Americans distrustful after hacking epidemic: survey

SEC probing Yahoo over cyberattacks: media

Big Brother will have some difficulty 'watching you' in future

China cracks down on bids to bypass online censorship

NANO TECH
India, Israel among five teams fighting for first private Moon landing

China schedules Chang'e-5 lunar probe launch

The science behind the Lunar Hydrogen Polar Mapper mission

Eugene Cernan, last man to walk on moon, dead at 82

NANO TECH
Scientists determine precise 3-D location 23,000 atoms in a nanoparticle

NIST updates 'sweet' 1950s separation method to clean nanoparticles from organisms

Nanocavity and atomically thin materials advance tech for chip-scale light sources

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale

NANO TECH
U.S. Army tests Stryker with 30mm cannon

Rheinmetall, Steyr Mannlicher announce new assault rifle

BAE Systems producing howitzers for India

Pentagon chief holds fast against torture

NANO TECH
Scientists determine precise 3-D location 23,000 atoms in a nanoparticle

NIST updates 'sweet' 1950s separation method to clean nanoparticles from organisms

Nanocavity and atomically thin materials advance tech for chip-scale light sources

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale

NANO TECH
New wave of robots set to deliver the goods

Over to you, automation

Making AI systems that see the world as humans do

Apple joins group devoted to keeping AI nice




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement