Subscribe to our free daily newsletters
  Nano Technology News  




Subscribe to our free daily newsletters



NANO TECH
Ultra-long, one-dimensional carbon chains are synthesised for the first time
by Staff Writers
Barrio Sarriena, Spain (SPX) Apr 22, 2016


Schematic representation of confined ultra-long, linear carbon chains inside different double-walled carbon nanotubes. Image courtesy Lei Shi / Faculty of Physics, University of Vienna.

Elemental carbon appears in many different forms, some of which are very well-known and have been thoroughly studied: diamond, graphite, graphene, fullerenes, nanotubes and carbyne. Within this "carbon family", carbyne (a truly one-dimensional carbon structure) is the only one that has not been synthesised until now, despite having been studied for more than 50 years. Organic chemists across the world had been trying to synthesise increasingly longer carbyne chains by using stabilizing agents; the longest chain obtained so far (achieved in 2010) was 44 carbon atoms.

A research group at the University of Vienna, led by Prof Thomas Pichler, has presented a new, simple means for stabilising carbon chains with a record-breaking length of over 6,400 carbon atoms. They have thus broken the previous record by more than two orders of magnitude. To do this, they used the confined space inside a double-walled carbon nanotube as a nano-reactor to make the ultra-long carbon chains grow and also to provide the chains with great stability. This stability is tremendously important for future applications.

The existence has been confirmed
The work carried out in collaboration with various highly prominent research groups worldwide, including the UPV/EHU's Nano-Bio Spectroscopy research Group led by Prof Angel Rubio, has unambiguously confirmed the existence of these chains by means of structural and optical probes. The researchers have presented their study in the latest edition of the prestigious Nature Materials journal.

According to the researchers, the direct experimental proof of the confined, ultra-long carbon chains, which are two orders of magnitude longer than the previously proven ones, can be seen as a promising step towards the final objective to obtain perfectly linear carbon chains.

Theoretical studies have shown that after having made these linear chains grow inside the carbon nanotube, the hybrid system could have a metallic nature due to the load transfer from the carbon nanotubes towards the chain, although both the nanotube and the chain are vacuum semi-conductors. So it is possible to control the electronic properties of this hybrid system. Therefore, this new system is not only interesting from the chemical point of view, it could also be very important in the field of nano devices.

According to theoretical models, carbyne has mechanical properties that are unmatched by any known material, as it even outperforms the mechanical resistance and flexibility properties of graphene and diamond. Furthermore, its electronic properties are pointing towards new nano-electronic applications, such as in the development of new magnetic semiconductors, high power density batteries, or in quantum spin transport electronics (spintronics).

However, the researchers point out that to do this it would be necessary to extract these ultra-long, linear carbon chains from the double-walled nanotube containing them and stabilise them in some liquid environment.

L. Shi, P. Rohringer, K. Suenaga, Y. Niimi, J. Kotakoski, J. C. Meyer, H. Peterlik, M. Wanko, S. Cahangirov, A. Rubio, Z. J. Lapin, L. Novotny, P. Ayala, T. Pichler. "Confined linear carbon chains as a route to bulk carbyne". Nature Materials, vol. 15, May 2016

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
University of the Basque Country
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
Intracellular recordings using nanotower electrodes
Toyohashi, Japan (SPX) Apr 15, 2016
Our current understanding of how the brain works is very poor. The electrical signals travel around the brain and throughout the body, and the electrical properties of the biological tissues are studied using electrophysiology. For acquiring a large amplitude and a high quality of neuronal signals, intracellular recording is a powerful methodology compared to extracellular recording to measure t ... read more


NANO TECH
Heavy-lift helicopters test external load capabilities

Russian stealth bomber to carry hypersonic missiles

Delayed take-off for China's own regional jet

Experts examine new debris for MH370 clues

NANO TECH
China plans to launch core module of space station around 2018

China set to launch "more livable" space lab in Q3

China aims for deeper space with new generation rockets

Chinese scientists develop mammal embryos in space for first time

NANO TECH
Apple denies handing source code over to China

Apple defends stand in Brooklyn case on iPhone access

Microsoft sues US over secret warrants to search email

Hackers helped FBI crack San Bernardino iPhone: report

NANO TECH
Supernova iron found on the moon

Russia to shift all Lunar launches to Vostochny Cosmodrome

Lunar lava tubes could help pave way for human colony

The Moon thought to play a major role in maintaining Earth's magnetic field

NANO TECH
Intracellular recordings using nanotower electrodes

'Honeycomb' of nanotubes could boost genetic engineering

A movie of the microworld: Physicists create nanoparticle picture series

NREL reveals potential for capturing waste heat via nanotubes

NANO TECH
Sagem forming Indian JV for AASM Hammer bomb kits

Northrop's new battle command system proves its worth

Orbital ATK making non-U.S. standard ammo for U.S. allies

Britain halts use of 105mm rounds after contamination

NANO TECH
Intracellular recordings using nanotower electrodes

'Honeycomb' of nanotubes could boost genetic engineering

A movie of the microworld: Physicists create nanoparticle picture series

NREL reveals potential for capturing waste heat via nanotubes

NANO TECH
Robots could get 'touchy' with self-powered smart skin

Autonomous vehicles face test limits tto prove safety

University of Sussex research brings 'smart hands' closer to reality

Scientists invent robotic 'artist' that spray paints giant murals




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement