Subscribe to our free daily newsletters
  Nano Technology News  




Subscribe to our free daily newsletters



NANO TECH
Ultrafast nanophotonics: Turmoil in sluggish electrons' existence
by Staff Writers
Munich, Germany (SPX) May 30, 2017


A team of physicists clocked the time it takes electrons to leave a dielectric after their generation with extreme ultraviolet light. The measurement (false color plot) was the first of its kind in a dielectric material and yielded a time of 150 attoseconds (as), from which the physicists determined that inelastic scattering in the dielectric takes about 370 as. Credit Dennis Luck, Thorsten Naeser/LMU Munich

An international team of physicists has monitored the scattering behavior of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy. We can refer to electrons in non-conducting materials as 'sluggish'.

Typically, they remain fixed in a location, deep inside an atomic composite. It is hence relatively still in a dielectric crystal lattice. This idyll has now been heavily shaken up by a team of physicists led by Matthias Kling, the leader of the Ultrafast Nanophotonics group in the Department of Physics at Ludwig-Maximilians-Universitaet (LMU) in Munich, and various research institutions, including the Max Planck Institute of Quantum Optics (MPQ), the Institute of Photonics and Nanotechnologies (IFN-CNR) in Milan, the Institute of Physics at the University of Rostock, the Max Born Institute (MBI), the Center for Free-Electron Laser Science (CFEL) and the University of Hamburg.

For the first time, these researchers managed to directly observe the interaction of light and electrons in a dielectric, a non-conducting material, on timescales of attoseconds (billionths of a billionth of a second). The study was published in the latest issue of the journal Nature Physics.

The scientists beamed light flashes lasting only a few hundred attoseconds onto 50 nanometer thick glass particles, which released electrons inside the material. Simultaneously, they irradiated the glass particles with an intense light field, which interacted with the electrons for a few femtoseconds (millionths of a billionth of a second), causing them to oscillate.

This resulted, generally, in two different reactions by the electrons. First, they started to move, then collided with atoms within the particle, either elastically or inelastically. Because of the dense crystal lattice, the electrons could move freely between each of the interactions for only a few angstrom (10-10 meter).

"Analogous to billiard, the energy of electrons is conserved in an elastic collision, while their direction can change. For inelastic collisions, atoms are excited and part of the kinetic energy is lost. In our experiments, this energy loss leads to a depletion of the electron signal that we can measure," explains Professor Francesca Calegari (CNR-IFN Milan and CFEL/University of Hamburg).

Since chance decides whether a collision occurs elastically or inelastically, with time inelastic collisions will eventually take place, reducing the number of electrons that scattered only elastically. Employing precise measurements of the electrons' oscillations within the intense light field, the researchers managed to find out that it takes about 150 attoseconds on average until elastically colliding electrons leave the nanoparticle.

"Based on our newly developed theoretical model we could extract an inelastic collision time of 370 attoseconds from the measured time delay. This enabled us to clock this process for the first time," describes Professor Thomas Fennel from the University of Rostock and Berlin's Max Born Institute in his analysis of the data.

The researchers' findings could benefit medical applications. With these worldwide first ultrafast measurements of electron motions inside non-conducting materials, they have obtained important insight into the interaction of radiation with matter, which shares similarities with human tissue. The energy of released electrons is controlled with the incident light, such that the process can be investigated for a broad range of energies and for various dielectrics.

"Every interaction of high-energy radiation with tissue results in the generation of electrons. These in turn transfer their energy via inelastic collisions onto atoms and molecules of the tissue, which can destroy it. Detailed insight about electron scattering is therefore relevant for the treatment of tumors.

It can be used in computer simulations to optimize the destruction of tumors in radiotherapy while sparing healthy tissue," highlights Professor Matthias Kling of the impact of the work. As a next step, the scientists plan to replace the glass nanoparticles with water droplets to study the interaction of electrons with the very substance which makes up the largest part of living tissue.

Research paper

NANO TECH
Researchers create first significant examples of optical crystallography for nanomaterials
Chicago IL (SPX) May 24, 2017
Nanocrystals have diverse applications spanning biomedical imaging, light-emitting devices, and consumer electronics. Their unique optical properties result from the type of crystal from which they are composed. However, a major bottleneck in the development of nanocrystals, to date, is the need for X-ray techniques to determine the crystal type. Researchers at the University of Illinois a ... read more

Related Links
Ludwig-Maximilians-Universitat Munchen
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
Cube Quest Challenge Team Spotlight: Cislunar Explorers

Winning plans for CubeSats to the Moon

Printing bricks from moondust using the Sun's heat

NASA selects ASU's ShadowCam for moon mission

NANO TECH
California Woman Charged for Trying to Hand Over Sensitive Space Tech to China

A cabin on the moon? China hones the lunar lifestyle

China tests 'Lunar Palace' as it eyes moon mission

China to conduct several manned space flights around 2020

NANO TECH
China to launch cybersecurity law despite concerns

Russia's disinformation efforts hit 39 countries: researchers

Jury out on North Korea link to ransomware attack

Ex-Trump aide Flynn defies Senate subpoena in Russia probe

NANO TECH
Cube Quest Challenge Team Spotlight: Cislunar Explorers

Winning plans for CubeSats to the Moon

Printing bricks from moondust using the Sun's heat

NASA selects ASU's ShadowCam for moon mission

NANO TECH
Ultrafast nanophotonics: Turmoil in sluggish electrons' existence

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst

Researchers create first significant examples of optical crystallography for nanomaterials

Molecular Lego for nanoelectronics

NANO TECH
exactEarth Launches Revolutionary Global Real-Time Maritime Tracking and Information Service

Earth is a jewel, says astronaut after six months away

SES-14 integrates NASA ultraviolet space spectrograph

NASA's CYGNSS Satellite Constellation Begins Public Data Release

NANO TECH
Ultrafast nanophotonics: Turmoil in sluggish electrons' existence

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst

Researchers create first significant examples of optical crystallography for nanomaterials

Molecular Lego for nanoelectronics

NANO TECH
Lockheed Martin exoskeleton helps soldiers carry heavy gear

CMU's interactive tool helps novices and experts make custom robots

Google's AlphaGo retires on top after humbling world No. 1

Chess-playing robot star of Taiwan tech fair




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement