Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. Nano Technology News .




NANO TECH
Illinois study advances limits for ultrafast nano-devices
by Staff Writers
Urbana IL (SPX) Jul 11, 2014


Ultrafast laser light creates heat transport through the nonmagnetic/ferromagnetic/nonmagnetic tri-layer. The thermal excitation in the ferromagnetic layer produces spin current in the adjacent nonmagnetic layer in a picosecond timescale. Image courtesy Gyung-Min Choi.

A recent study by researchers at the University of Illinois at Urbana-Champaign provides new insights on the physical mechanisms governing the interplay of spin and heat at the nanoscale, and addresses the fundamental limits of ultrafast spintronic devices for data storage and information processing.

"Electrons carry a charge as well as spin-angular momentum. In a typical charge current, electrons' spin-angular-momentum is random so there is no spin current," explained David Cahill, a professor of materials science and engineering at Illinois.

"However when electrons move with a partial alignment of spin-angular-momentum, we call it spin current which is the key element for nanoscale spintronic devices.

"It is understood that spin current can rotate magnetization. In other words, we can use spin current to select "0" or "1" state of magnetic memory devices. For ultrafast operation of such nano-devices, generation of spin current in picoseconds-one trillionth of a second-a time-scale that is difficult to achieve using electrical circuits, is highly desired," Cahill added.

"In a typical electrical circuit approach, spin current is driven by voltage difference across the structure. In this work, we utilized differences in temperature to generate spin currents," explained Gyung-Min Choi, lead author of the paper, "Spin current generated by thermally-driven ultrafast demagnetization," published in Nature Communications.

"A metallic ferromagnet has three energy reservoirs: electrons, magnons, and phonons," Choi stated. "Using ultra-short laser light, we created temperature differences between these reservoirs of thermal energy for a few picoseconds. The temperature difference between electron and magnon drives an exchange of spin-angular-momentum.

"Thus, we transport spin-angular-momentum from magnons to electrons, and this transport leads to ultrafast spin current," Choi added. "We refer to this spin current as thermally-driven and believe that our results extend the emerging discipline of spin caloritronics into the regime of picosecond time scales.

The benefits of thermal generation over electric generation are two-fold, according to Choi.

"Thermal spin generation has a potential for higher efficiency than spin generation by electrical currents. Our work shows that thermal spin current can be large enough to rotate magnetization. Although the amount of spin current is still smaller than what would be required for practical applications, we show the potential of thermal generation.

"The second advantage is the fast timescale. The time scale of spin currents generated by electrical currents is limited to a few nanoseconds. In this work, we are able to create spin current with timescale of a few picoseconds. Picosecond generation of spin current is desirable for fast operation of magnetic memory devices."

.


Related Links
University of Illinois College of Engineering
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





NANO TECH
Scientists Develop Force Sensor from Carbon Nanotubes
Moscow, Russia (SPX) Jul 01, 2014
A group of researchers from Russia, Belarus and Spain, including MIPT professor Yury Lozovik, have developed a microscopic force sensor based on carbon nanotubes. The device is described in an article published in the journal Computational Materials Science and is also available as a preprint. The scientists proposed using two nanotubes, one of which is a long cylinder with double walls on ... read more


NANO TECH
China's own dreamliner prepares for takeoff

US F-35's debut at British air show in doubt

Hague pushes Eurofighter on India visit

Northrop Grumman received new order for E-2D aircraft

NANO TECH
Chinese moon rover designer shooting for Mars

Yutu designer's bittersweet

Are China's Astronauts Moonbound

Chinese scientists prepare for lunar base life support system

NANO TECH
Industrial control a weak link in cybersecurity: study

Moscow accuses US of 'abducting' Russian MP's son

Verizon data queries nearly 150,000 in 2014

Hackers take over Israel army Twitter account

NANO TECH
Three Reforms to Protect Cap-and-Trade Policy

Blow for Australia government as carbon tax repeal fails

Upton wants policies in place to exploit energy leadership

Green planning needed to maintain city buildings

NANO TECH
Getting a charge out of water droplets

Flexlab Opens Test Beds to Drive Dramatic Increase in Building Efficiency

Britain wins carbon capture funding from EU

Insights from nature for more efficient water splitting

NANO TECH
Australia. Japan sign defense technology agreement

New armored vehicle on way for Ukraine

Geese caused deadly US military chopper crash

BAE Systems looks to the future

NANO TECH
A smashing new look at nanoribbons

Scientists Develop Force Sensor from Carbon Nanotubes

Shaken, not stirred -- mythical god's capsules please!

Diamond plates create nanostructures through pressure, not chemistry

NANO TECH
Your next opponent in Angry Birds could be a robot

US military awards $40 million toward memory implant

Muscle-powered bio-bots walk on command

How do ants get around? Ultra-sensitive machines measure their every step...




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.