Subscribe free to our newsletters via your
. Nano Technology News .

Water makes wires even more nano
by Staff Writers
Houston TX (SPX) Apr 09, 2015

This crossbar array was produced with the meniscus-mask lithography technique invented at Rice University. The crossbar wires are made of silicon dioxide. The scale bar is 10 microns; the inset scale bar is 100 nanometers. Image courtesy Tour Group/Rice University. For a larger version of this image please go here.

Water is the key component in a Rice University process to reliably create patterns of metallic and semiconducting wires less than 10 nanometers wide. The technique by the Rice lab of chemist James Tour builds upon its discovery that the meniscus - the curvy surface of water at its edge - can be an effective mask to make nanowires.

The Rice team of Tour and graduate students Vera Abramova and Alexander Slesarev have now made nanowires between 6 and 16 nanometers wide from silicon, silicon dioxide, gold, chromium, tungsten, titanium, titanium dioxide and aluminum. They have also made crossbar structures of conducting nanowires from one or more of the materials.

A paper on their technique, called meniscus-mask lithography, has been published online by the American Chemical Society journal Nano Letters.

The process is promising for the semiconductor industry as it seeks to make circuits ever smaller. State-of-the-art integrated circuit fabrication allows for signal wires that approach 10 nanometers, visible only with powerful microscopes. These are the paths that connect the billions of transistors in modern electronic devices.

"This could have huge ramifications for chip production since the wires are easily made to sub-10-nanometer sizes," Tour said of the Rice process. "There's no other way in the world to do this en masse on a surface."

Current approaches to making such tiny wires take several paths. Lithography, the standard method for etching integrated circuits, is approaching the physical limits of its ability to shrink them further. Bulk synthesis of semiconducting and metallic nanowires is also possible, but the wires are difficult to position in integrated circuits.

Water's tendency to adhere to surfaces went from an annoyance to an advantage when the Rice researchers found they could use it as a mask to make patterns. The water molecules gather wherever a raised pattern joins the target material and forms a curved meniscus created by the surface tension of water.

The meniscus-mask process involves adding and then removing materials in a sequence that ultimately leaves a meniscus covering the wire and climbing the sidewall of a sacrificial metal mask that, when etched away, leaves the nanowire standing alone.

Tour said the process should work with modern fabrication technology with no modifications to existing equipment and minimal changes in fabrication protocols. No new tools or materials are needed.

Read the abstract here.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
Rice University
Nano Technology News From
Computer Chip Architecture, Technology and Manufacture

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Optics, nanotechnology combined to create low-cost sensor for gases
Corvallis OR (SPX) Apr 08, 2015
Engineers have combined innovative optical technology with nanocomposite thin-films to create a new type of sensor that is inexpensive, fast, highly sensitive and able to detect and analyze a wide range of gases. The technology might find applications in everything from environmental monitoring to airport security or testing blood alcohol levels. The sensor is particularly suited to detect ... read more

NASA advances composite materials for aircraft of the future

Pakistan seeks Viper attack helos, Hellfire missiles

Saab producing protection systems for Indian helos

Chinese Army Gets Brand New Early Warning and Control Aircraft

Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

China's Space Laboratory Still Cloaked

French TV5Monde hit by 'pro-Islamic State hackers'

Singapore Telecom to buy US cybersecurity firm for $810 mn

White House says classified systems not hacked

New coalition forms to end mass US surveillance

Japan to pledge 20% greenhouse gas cut: report

Residential research poor foundation for sustainable development

Latin America divided between oil and green energy

New Zealand breaks renewable energy record

Battery energy storage project shows promise for electricity network

A common battery test often bounces off target

Using magnetic fields to understand high-temperature superconductivity

Bacteria can use magnetic particles to create a 'natural battery'

CACI engineering support for Army EW software

New armored ATV for Middle East, African markets

Springing ahead of nature: Device increases walking efficiency

Magal supplying perimeter security systems

Optics, nanotechnology combined to create low-cost sensor for gases

Nanoscale worms provide new route to nano-necklace structures

Chemists make new silicon-based nanomaterials

UW scientists build a nanolaser using a single atomic sheet

Researchers build brain-machine interface to control prosthetic hand

Modular brains help organisms learn new skills without forgetting old skills

Ultra-realistic robot proves there's more than one way to scare a fish

Computer sharing of personality in sight: inventor

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.