Nano Technology News  
NANO TECH
1,000 times more efficient nano-LED opens door to faster microchips
by Staff Writers
Eindhoven, Netherlands (SPX) Feb 03, 2017


This is a scanning electron microscope picture of the new nano-LED, including some details. Image courtesy Eindhoven University of Technology.

The electronic data connections within and between microchips are increasingly becoming a bottleneck in the exponential growth of data traffic worldwide. Optical connections are the obvious successors but optical data transmission requires an adequate nanoscale light source, and this has been lacking.

Scientists at Eindhoven University of Technology (TU/e) now have created a light source that has the right characteristics: a nano-LED that is 1000 times more efficient than its predecessors, and is capable of handling gigabits per second data speeds. They have published their findings in the online journal Nature Communications.

With electrical cables reaching their limits, optical connections like fiberglass are increasingly becoming the standard for data traffic. Over longer distances almost all data transmission is optical. Within computer systems and microchips, too, the growth of data traffic is exponential, but that traffic is still electronic, and this is increasingly becoming a bottleneck.

Since these connections ('interconnects') account for the majority of the energy consumed by chips, many scientists around the world are working on enabling optical (photonic) interconnects. Crucial to this is the light source that converts the data into light signals which must be small enough to fit into the microscopic structures of microchips.

At the same time, the output capacity and efficiency have to be good. Especially the efficiency is a challenge, as small light sources, powered by nano- or microwatts, have always performed very inefficiently to date.

Researchers at TU Eindhoven have now developed a light-emitting diode (LED) of some hundred nanometers with an integrated light channel (waveguide) to transport the light signal. This integrated nano-LED is a 1000 times more efficient than the best variants developed elsewhere.

The Eindhoven-based researchers have especially made progress in the quality of the integrated coupling of the light source and the waveguide whereby much less light is lost and therefore far more light enters the waveguide. The efficiency of the new nano-LED currently lies between 0.01 and 1 percent, but the researchers expect to be well above that figure soon thanks to a new production method.

Another key characteristic of the new nano-LED is that it is integrated into a silicon substrate on a membrane of indium phosphide. Silicon is the basic material for microchips but is not suitable for light sources whereas indium phosphide is. Furthermore, tests reveal that the new element converts electrical signals rapidly into optical signals and can handle data speeds of several gigabits per second.

The researchers in Eindhoven believe that their nano-LED is a viable solution that will take the brake off the growth of data traffic on chips. However, they are cautious about the prospects. The development is not yet at the stage where it can be exploited by the industry and the production technology that is needed still has to get off the ground.

The paper 'Waveguide-coupled nanopillar metal-cavity light-emitting diodes on silicon' appeared on 2 February 2017 in Nature Communications, and can be found under reference number DOI 10.1038/ncomms14323. The authors are V. Dolores-Calzadilla, B. Romeira, F. Pagliano, S. Birindelli, A. Higuera-Rodriguez, P.J. van Veldhoven, M.K. Smit, A. Fiore and D. Heiss.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Eindhoven University of Technology
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
NIST updates 'sweet' 1950s separation method to clean nanoparticles from organisms
Washington DC (SPX) Jan 27, 2017
Sometimes old-school methods provide the best ways of studying cutting-edge tech and its effects on the modern world. Giving a 65-year-old laboratory technique a new role, researchers at the National Institute of Standards and Technology (NIST) have performed the cleanest separation to date of synthetic nanoparticles from a living organism. The new NIST method is expected to significantly ... read more


NANO TECH
Advanced robotic bat's flight characteristics simulates the real thing

Pentagon chief orders review of F-35 fighter program

State Dept. approves $525 million aerostat sale to Saudi Arabia

Kazakhstan orders Russian Mi-35M helicopters

NANO TECH
China looks to Mars, Jupiter exploration

China's first cargo spacecraft to leave factory

China launches commercial rocket mission Kuaizhou-1A

China Space Plan to Develop "Strength and Size"

NANO TECH
Americans distrustful after hacking epidemic: survey

SEC probing Yahoo over cyberattacks: media

Big Brother will have some difficulty 'watching you' in future

China cracks down on bids to bypass online censorship

NANO TECH
India, Israel among five teams fighting for first private Moon landing

China schedules Chang'e-5 lunar probe launch

The science behind the Lunar Hydrogen Polar Mapper mission

Eugene Cernan, last man to walk on moon, dead at 82

NANO TECH
Scientists determine precise 3-D location 23,000 atoms in a nanoparticle

NIST updates 'sweet' 1950s separation method to clean nanoparticles from organisms

Nanocavity and atomically thin materials advance tech for chip-scale light sources

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale

NANO TECH
U.S. Army tests Stryker with 30mm cannon

Rheinmetall, Steyr Mannlicher announce new assault rifle

BAE Systems producing howitzers for India

Pentagon chief holds fast against torture

NANO TECH
Scientists determine precise 3-D location 23,000 atoms in a nanoparticle

NIST updates 'sweet' 1950s separation method to clean nanoparticles from organisms

Nanocavity and atomically thin materials advance tech for chip-scale light sources

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale

NANO TECH
New wave of robots set to deliver the goods

Over to you, automation

Making AI systems that see the world as humans do

Apple joins group devoted to keeping AI nice









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.