AD alloyed nanoantennas for temperature-feedback identification of viruses and explosives by Staff Writers Vladivostok, Russia (SPX) Apr 03, 2019
Scientists of Far Eastern Federal University (FEFU) in collaboration with colleagues from Far Eastern Branch of Russian Academy of Sciences (FEB RAS), ITMO University and Swinburne University of Technology (Australia) developed a method for efficient mass production of silicon-germanium fully alloyed nanoantennas. On their basis, optical biosensory platforms and next-generation chemical sensors for fast and accurate tracing of viruses, pollutions, explosives, etc. at low concentrations are expected to appear. Related paper was published in Nanoscale. To fabricate all-dielectric (AD) optical nanoantennas, scientists proposed a facile technology based on a temperature-assisted dewetting of commercial silicon-on-insulator (SOI) substrates at 800C in high vacuum. Such treatment of SOI substrate leads to the formation of silicon nanodrops, which can be used as optical nanoantennas, amplifying the signals from various adsorbed molecules. Scientists have shown that the deposition of Ge in the process of SOI dewetting allows producing alloyed nanoparticles with unique properties. Such nanoantennas allow to identify adsorbed molecules as well as to access and control the local temperature at high accuracy and resolution in the process of measurement. "It's very useful to know the local temperature because in the process of measurement both the nanoantennas and the adsorbed analyte molecules are exposed with intense laser radiation which causes their heating. At the same time, most organic molecules degrade at rather low temperatures around 130-170C, i.e. in the process of measurement one can simply burn them up before getting a useful signal. Such useful temperature-feedback modality cannot be realized with plasmonic nanoantennas commonly used to design biosensors. All-dielectric nanoantennas provide a reliable way to achieve this feature as the measured characteristics spectrum of the analyte molecules already contains all information required to determine the local temperature of the "nanoantenna-molecule" system." Said Aleksandr Kuchmizhak, a researcher in the FEFU Center for Virtual and Augmented reality. "By controlling the concentration of germanium in the alloyed silicon nanoparticles, one can tailor their properties; in particular, control their resonant optical characteristics, as well as the light-to-heat conversion efficiency. This is very useful for studying of various chemical processes and reactions induced by laser radiation." Reported Evgeny Mitsai, a researcher at Institute of Automation and Control Processes and Institute of Chemistry, FEB RAS. The scientist emphasized that by using all-dielectric nanoantennas one can study in details the temperature-mediated effects in laser-induced chemical reactions at high temporal resolution. Moreover, all-dielectric nanoantennas remain chemically non-invasive, i.e. their presence - unlike the presence of the plasmonic-based nanoantennas - causes no effect on the studied analytes and reactions. Until today, the mass production of all-dielectric nanoantennas was difficult. Commonly used electron-beam lithography was too expensive and time-consuming. The technology proposed by FEFU scientists in collaboration with their colleagues from the FEB RAS, ITMO University, universities of Australia and Tunisia, allows getting over this limitation.
Quantum optical cooling of nanoparticles Vienna, Austria (SPX) Apr 03, 2019 Tightly focused laser beams can act as optical "tweezers" to trap and manipulate tiny objects, from glass particles to living cells. The development of this method has earned Arthur Ashkin the last years Nobel prize in physics. While most experiments thus far have been carried out in air or liquid, there is an increasing interest for using optical tweezers to trap objects in ultra-high vacuum: such isolated particles not only exhibit unprecedented sensing performance, but can also be used to study ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |