. Nano Technology News .




.
NANO TECH
High-res atomic imaging of specimens in liquid by TEM using graphene liquid cell
by Staff Writers
Daejeon, South Korea (SPX) Apr 13, 2012

Two sheets of graphene encapsulate a platinum growth solution. Credit: KAIST.

The Korea Advanced Institute of Science and Technology (KAIST) announced that a research team from the Department of Materials Science and Engineering has developed a technology that enables scientists and engineers to observe processes occurring in liquid media on the smallest possible scale which is less than a nanometer.

Professor Jeong Yong Lee and Researcher Jong Min Yuk, in collaboration with Professor Paul Alivisatos's and Professor Alex Zettl's groups at the University of California, Berkeley, succeeded in making a graphene liquid cell or capsule, confining an ultra-thin liquid film between layers of graphene, for real-time and in situ imagining of nanoscale processes in fluids with atomic-level resolution by a transmission electron microscope (TEM). Their research was published in Science.

The graphene liquid cell (GLC) is composed of two sheets of graphene sandwiched to create a sealed chamber where a platinum growth solution is encapsulated in the form of a thin slice. Each graphene layer has a thickness of one carbon atom, the thinnest membrane that has ever been used to fabricate a liquid cell required for TEM.

The research team peered inside the GLC to observe the growth and dynamics of platinum nanocrystals in solution as they coalesced into a larger size, during which the graphene membrane with the encapsulated liquid remained intact.

The researchers from KAIST and the UC Berkeley identified important features in the ongoing process of the nanocrystals' coalescence and their expansion through coalescence to form certain shapes by imaging the phenomena with atomic-level resolution.

Professor Lee said, "It has now become possible for scientists to observe what is happening in liquids on an atomic level under transmission electron microscopes."

Researcher Yuk, one of the first authors of the paper, explained his research work.

"This research will promote other fields of study related to materials in a fluid stage including physical, chemical, and biological phenomena at the atomic level and promises numerous applications in the future. Pending further studies on liquid microscopy, the full application of a graphene-liquid-cell (GLC) TEM to biological samples is yet to be confirmed. Nonetheless, the GLC is the most effective technique developed today to sustain the natural state of fluid samples or species suspended in the liquid for a TEM imaging."

The transmission electron microscope (TEM), first introduced in the 1930s, produces images at a significantly higher resolution than light microscopes, allowing users to examine the smallest level of physical, chemical, and biological phenomena.

Observations by TEM with atomic resolution, however, have been limited to solid and/or frozen samples, and thus it has previously been impossible to study the real time fluid dynamics of liquid phases.

TEM imaging is performed in a high vacuum chamber in which a thin slice of the imaged sample is situated, and an electron beam passes through the slice to create an image. In this process, a liquid medium, unlike solid or frozen samples, evaporates, making it difficult to observe under TEM.

Attempts to produce a liquid capsule have thus far been made with electron-transparent membranes of such materials as silicon nitride or silicon oxide; such liquid capsules are relatively thick (tens to one hundred nanometers), however, resulting in poor electron transmittance with a reduced resolution of only a few nanometers. Silicon nitride is 25 nanometers thick, whereas graphene is only 0.34 nanometers.

Graphene, most commonly found in bulk graphite, is the thinnest material made out of carbon atoms. It has unique properties such as mechanical tensile strength, high flexibility, impermeability to small molecules, and high electrical conductivity. Graphene is an excellent material to hold micro- and nanoscopic objects for observation in a transmission electron microscope by minimizing scattering of the electron beam that irradiates a liquid sample while reducing charging and heating effects.

Their research was published in the April 6, 2012 issue of Science.

Related Links
The Korea Advanced Institute of Science and Technology (KAIST)
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



NANO TECH
Carbon nanotubes can double growth of cell cultures important in industry
Washington DC (SPX) Apr 10, 2012
A dose of carbon nanotubes more than doubles the growth rate of plant cell cultures - workhorses in the production of everything from lifesaving medications to sweeteners to dyes and perfumes - researchers are reporting. Their study, the first to show that carbon nanotubes boost plant cell division and growth, appears in the journal ACS Nano. Mariya V. Khodakovskaya and colleagues explain ... read more


NANO TECH
Australia's Qantas makes first commercial biofuel flight

EU plays down financial impact of carbon tax on airlines

Airborne prayers problem solved for tech-savvy Muslims

Engine failure forces Cathay jet to turn back

NANO TECH
China's Lunar Docking

Shenzhou-9 may take female astronaut to space

China to launch 100 satellites during 2011-15

Three for Tiangong

NANO TECH
Apple out to kill widespread Macintosh virus

China web giants vow to fight 'rumours'

Anonymous leaks emails hacked from Tunisia's leaders

British interior ministry probes website attack

NANO TECH
Brit energy firms must reveal best rates

India ranks high in clean energy

Some 'improved cookstoves' may emit more pollution than traditional mud cookstoves

Smart grid's global reach set to top $46B

NANO TECH
Oil prices drop on slower Chinese growth

Philippines, China make progress in standoff

US gets respite from high fuel prices

Philippines deploys second ship in China standoff

NANO TECH
Northrop Grumman Achieves Major Milestone in Electronic Warfare Technology

Boeing, US Navy Conduct Networked Distributed Targeting Capability Flight Test on Super Hornet

Northrop Grumman Awarded Contract to Deliver Unattended Ground Systems

Boeing to Upgrade B-1 Navigation System for USAF

NANO TECH
High-res atomic imaging of specimens in liquid by TEM using graphene liquid cell

Carbon nanotubes can double growth of cell cultures important in industry

Nanoscale magnetic media diagnostics by rippling spin waves

Nanostarfruits are pure gold for research

NANO TECH
U.S. offers $2 million for rescue robot

Easy Robotic Design and Production

US scientists launch personalized robot project

Robosquirrels versus rattlesnakes


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement