Subscribe free to our newsletters via your
. Nano Technology News .




NANO TECH
Low cost technique improves properties of nanomaterials
by Staff Writers
Singapore (SPX) Jul 23, 2014


This image depicts Dr Lu Junpeng (left) and Professor Sow Chorng Haur (right) from the Department of Physics at the NUS Faculty of Science working with the customised focused laser machine. Image courtesy National University of Singapore.

The challenges faced by researchers in modifying properties of nanomaterials for application in devices may be addressed by a simple technique, thanks to recent innovative studies conducted by scientists from the National University of Singapore (NUS).

Through the use of a simple, efficient and low cost technique involving a focused laser beam, two NUS research teams, led by Professor Sow Chorng Haur from the Department of Physics at the NUS Faculty of Science, demonstrated that the properties of two different types of materials can be controlled and modified, and consequently, their functionalities can be enhanced.

Said Prof Sow, "In our childhood, most of us are likely to have the experience of bringing a magnifying glass outdoors on a sunny day and tried to focus sunlight onto a piece of paper to burn the paper. Such a simple approach turns out to be a very versatile tool in research. Instead of focusing sunlight, we can focus laser beam onto a wide variety of nanomaterials and study effects of the focused laser beam has on these materials."

Micropatterns 'drawn' on MoS2 films could enhance electrical conductivity and photoconductivity
Molybdenum disulfide (MoS2), a class of transition metal dichalcogenide compound, has attracted great attention as an emerging two-dimensional (2D) material due to wide recognition of its potential in and optoelectronics. One of the many fascinating properties of 2D MoS2 film is that its properties depend on the thickness of the film.

In addition, its properties can be modified once the film is modified chemically. Hence one of the challenges in this field is the ability to create microdevices out of the MoS2 film comprising components with different thickness or chemical nature.

To address this technological challenge, Prof Sow, Dr Lu Junpeng, a postdoctoral candidate from the Department of Physics at the NUS Faculty of Science, as well as their team members, utilised an optical microscope-focused laser beam setup to 'draw' micropatterns directly onto large area MoS2 films as well as to thin the films.

With this simple and low cost approach, the scientists were able to use the focused laser beam to selectively 'draw' patterns onto any region of the film to modify properties of the desired area, unlike other current methods where the entire film is modified.

Interestingly, they also found that the electrical conductivity and photoconductivity of the modified material had increased by more than 10 times and about five times respectively. The research team fabricated a photodetector using laser modified MoS2 film and demonstrated the superior performance of MoS2 for such application.

This innovation was first published online in the journal ACS Nano.

Hidden images 'drawn' by focused laser beam on silicon nanowires could improve optical functionalities
In a related study published in the journal Scientific Reports, Prof Sow led another team of researchers from the NUS Faculty of Science, in collaboration with scientists from Hong Kong Baptist University, to investigate how 'drawing' micropatterns on mesoporous silicon nanowires could change the properties of nanowires and advance their applications.

The team scanned a focused laser beam rapidly onto an array of mesoporous silicon nanowires, which are closely packed like the tightly woven threads of a carpet. They found that the focused laser beam could modify the optical properties of the nanowires, causing them to emit greenish-blue fluorescence light. This is the first observation of such a laser-modified behaviour from the mesoporous silicon nanowires to be reported.

The researchers systematically studied the laser-induced modification to gain insights into establishing control over the optical properties of the mesoporous silicon nanowires. Their understanding enabled them to 'draw' a wide variety of micropatterns with different optical functionalities using the focused laser beam.

To put their findings to the test, the researchers engineered the functional components of the nanowires with interesting applications. The research team demonstrated that the micropatterns created at a low laser power are invisible under bright-field optical microscope, but become apparent under fluorescence microscope, indicating the feasibility of hidden images.

Further research
The fast growing field of electronics and optoelectronics demands precise material deposition with application-specific optical, electrical, chemical, and mechanical properties.

To develop materials with properties that can cater to the industry's demands, Prof Sow, together with his team of researchers, will extend the versatile focused laser beam technique to more nanomaterials. In addition, they will look into further improving the properties of MoS2 and mesoporous silicon with different techniques.

.


Related Links
National University of Singapore
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





NANO TECH
"Nanocamera" takes pictures at distances smaller than light's own wavelength
Champaign IL (SPX) Jul 22, 2014
Researchers at the University of Illinois at Urbana-Champaign have demonstrated that an array of novel gold, pillar-bowtie nanoantennas (pBNAs) can be used like traditional photographic film to record light for distances that are much smaller than the wavelength of light (for example, distances less than ~600 nm for red light). A standard optical microscope acts as a "nanocamera" whereas the pBN ... read more


NANO TECH
Typhoon fighter program a boon for British companies

France receives upgraded AWACS plane

Sweden not a bidder for fighter procurement by Denmark

Brazilian Air Force jet engines receiving Avio Aero support

NANO TECH
Lunar rock collisions behind Yutu damage

China to launch HD observation satellite this year

China's Fast Track To Circumlunar Mission

Chinese moon rover designer shooting for Mars

NANO TECH
IT security company issues heads-up to small enterprises

Apple denies Chinese report of location tracking security risk

Putin condemns 'hypocrisy' of Western cyber-espionage

Industrial control a weak link in cybersecurity: study

NANO TECH
EU sets new energy savings target at 30%

U.S. ranks 13th among 16 economies in energy efficiency

Germany most energy efficient nation: study

Minnesota Power to fund renewables in EPA settlement

NANO TECH
Improving the cost and efficiency of renewable energy storage

Organic zeolites

Rutgers Chemists Develop Clean-Burning Hydrogen Fuel

3-D nanostructure could benefit gas storage

NANO TECH
Army developing pocket-sized ISR system for soldiers

New collaboration between Australian military, universities

Dynamics Aviation continues CEASAR program support

Enertec Systems 2001 Ltd receives new Israeli order

NANO TECH
"Nanocamera" takes pictures at distances smaller than light's own wavelength

Rice nanophotonics experts create powerful molecular sensor

Researchers demonstrate novel, tunable nanoantennas

Illinois study advances limits for ultrafast nano-devices

NANO TECH
This time for the PLA: Chinese army shows off dancing robots

Wake up, robot

Astronauts to Test Free-Flying "Housekeeper" Robots

Medical advances turn science fiction into science fact




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.