|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
|
![]() |
![]() by Staff Writers London UK (SPX) Mar 19, 2015
A team of scientists at UCL led by Peter Barker and Tania Monteiro (UCL Physics and Astronomy) has developed a new technology which could one day create quantum phenomena in objects far larger than any achieved so far. The team successfully suspended glass particles 400 nanometres across in a vacuum using an electric field, then used lasers to cool them to within a few degrees of absolute zero. These are the key prerequisites for making an object behave according to quantum principles. Quantum phenomena are strange and unfamiliar. These include superposition, where the position or energy of a particle exists in two or more states at the same time and entanglement, where two particles share the same state (and change in tandem with each other) despite not touching. But quantum phenomena are only observable in the smallest of objects, such as atoms or molecules, and are typically very short lived, just a fraction of a second. Moreover, the act of observing them, or of them interacting with their surroundings, is enough to destroy the quantum state. "Tiny objects like atoms behave according to the laws of quantum physics," says James Millen (UCL Physics and Astronomy), lead author of the study. "Large objects, like the ones we see around us, don't. But there's no obvious cut-off for where quantum behaviour should end. The largest objects that have been made to behave in a quantum manner are large molecules of about 800 atoms. "We are trying to do the same with glass particles made up of billions of atoms, around the same size as viruses. This is small on human scales, but it is enormous as far as quantum phenomena are concerned. It's even big enough to see with the naked eye if you make light glint off it." Inducing quantum states in objects requires powerful cooling, to bring the temperature close to absolute zero, when atoms stop vibrating. Widely-used technologies, such as laser cooling, that work for atoms won't work for such large objects, and a related technique called cavity cooling must be used. During cavity cooling, a particle is suspended by a laser light field contained between two mirrors, which has a very carefully calibrated wavelength. The laser light can hold the particle steady (a phenomenon known as optical tweezing) and draw motional energy out of it at the same time. However since the laser light can sometimes actually heat the objects up this method has not been shown to work before. "Our solution was to combine the laser beam that cools the glass particle with an electric field which makes it levitate," Millen explains. "The electric field also gently moves the glass particle around inside the laser beam, helping it lose temperature more effectively." The team are still a few degrees short of the temperature required to create quantum behaviour in the glass nanospheres, but with improved mirrors, this should be relatively easy to do. And once sufficiently cooled, the team believes the nanospheres should behave according to quantum principles. Once successfully implemented, the technology could allow for highly accurate motion sensors that could detect the slightest tremor, to key tools in quantum computer networks. Since the particles currently used in quantum experiments are tiny, they have negligible mass and so barely interact with gravity. Observing quantum effects in large and heavy objects like these nanoparticles would also shed light on the role of gravity in quantum physics. The study is published in the journal Physical Review Letters.
Related Links University College London Nano Technology News From SpaceMart.com Computer Chip Architecture, Technology and Manufacture
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |