. Nano Technology News .




NANO TECH
New device could cut costs on household products, pharmaceuticals
by Staff Writers
Seattle WA (SPX) Apr 16, 2013


A web-like, gel structure is formed after fluid passes through the flow device. The unit of measurement is 1 micron. Credit: Environmental Molecular Sciences Laboratory and University of Washington.

Sometimes cost saving comes in nanoscale packages. A new procedure that thickens and thins fluid at the micron level could save consumers and manufacturers money, particularly for soap products that depend on certain molecules to effectively deal with grease and dirt.

Read the back of most shampoos and dishwashing detergents and you'll find the word "surfactant" in the list of active ingredients. Surfactant molecules are tiny, yet they are the reason dish soap can attack an oily spot and shampoo can rid the scalp of grease.

Surfactant molecules are made up of two main parts, a head and a tail. Heads are attracted to water, while the tails are oil-soluble. This unique structure helps them break down and penetrate grease and oil while immersed in water. It also makes the soaps, shampoos and detergents thicker, or more viscous.

Soap manufacturers add organic and synthetic surfactants - and often a slew of other ingredients - to their products to achieve a desired thickness and to help remove grease and dirt.

These extra ingredients add volume to the soap products, which then cost more to manufacture, package and ship, ultimately shifting more costs to consumers, said Amy Shen, a UW associate professor of mechanical engineering and lead author of the paper.

The research team's design could create the same thickening results without having to add extra ingredients.

"Our flow procedure can potentially help companies and consumers save a lot of money," Shen said. "This way, companies don't have to add too many surfactants to their products."

Researchers found that when they manipulated the flow of a liquid through microscopic channels, the resulting substance became thicker. Now, scientists add a lot of salt, or alter the temperature and level of acidity to induce this change, but these methods can be expensive and more toxic, Shen said.

The team built a palm-sized tool called a microfluidics device that lets researchers pump water mixed with a little detergent and salt through a series of vertical posts.

The distance between posts is about one-tenth the size of a single human hair. That micron-sized gap squeezes the liquid as it flows, causing it to quickly deform. The end result is a gel-like substance that's more viscous and elastic.

When researchers looked at high-resolution images of the end product, they saw a series of wormlike rods attaching and intermingling with each other, creating an entangled web.

This structure stayed intact after the procedure was complete, which suggests this process can create a permanent, scaffold-like network that could prove useful for biological applications, Shen said. She is collaborating with other UW researchers to try to create stable structures that could house enzymes and other biomarkers for detecting certain diseases.

Shen and her team also discovered that when they pumped a thicker, more elastic fluid through the device, the opposite effect happened - the gel became thinner and more porous.

This could be useful in biomedical applications, Shen said, though it hasn't yet been tested. In theory, a semi-solid gel could be injected into veins, then transform into a thinner liquid, delivering drugs throughout the body.

Researchers hope one eventual outcome will be a scaled-up industrial design of their microfluidics device that could help manufacturers churn out soap products that aren't filled with an excess of added materials. Shen has presented her initial findings at Procter and Gamble Co.

"What we can provide are all of the important parameters for operating conditions so companies can have an industrial design to achieve their goals," Shen said.

Researchers at the University of Washington published their findings online April 9 in the Proceedings of the National Academy of Sciences. Read the paper here.

.


Related Links
University of Washington
Shen lab
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





NANO TECH
Nanotechnology imaging breakthrough
Washington DC (SPX) Apr 11, 2013
A team of researchers has made a major breakthrough in measuring the structure of nanomaterials under extremely high pressures. For the first time, they developed a way to get around the severe distortions of high-energy X-ray beams that are used to image the structure of a gold nanocrystal. The technique, described in Nature Communications, could lead to advancements of new nanomaterials create ... read more


NANO TECH
Boeing X-48C Blended Wing Body Research Aircraft Completes Flight Testing

X-48 Project Completes Flight Research for Cleaner, Quieter Aircraft

Dassault and India in Rafale deal standoff

Israel boosts air force 'pack of leopards

NANO TECH
Shenzhou's Shadow Crew

Shenzhou 10 sent to launch site

China's Next Women Astronauts

Shenzhou 10 - Next Stop: Jiuquan

NANO TECH
China, US to work together on cybersecurity: Kerry

'Chinese hackers' deface Philippines news website

Israel strikes back after cyberattack

US must prove Manning knew leaks would aid Al-Qaeda

NANO TECH
Renewable Energy Won't Stop Climate Change

Is Tunisia the New Hot Spot for Energy Investors?

Jordan scrambles to secure energy resources

ADB report warns on Asian energy

NANO TECH
Better batteries from waste sulfur

Oil prices plunge after weak US, China data

Argentina importing fuel to meet shortages

Activists plant North Pole flag to fight oil drilling

NANO TECH
Raytheon awarded DTRA border security contract

Updated Laser Rangefinder/Designator From Northrop Grumman, DRS Technologies Completes Flight Testing

Lockheed Martin to Provide US Army with Simulation-Based Command and Battle Staff Training System

Cobra Judy Replacement radars perform exceptionally during first live-launch test

NANO TECH
New device could cut costs on household products, pharmaceuticals

Nanotechnology imaging breakthrough

Surface diffusion plays a key role in defining the shapes of catalytic nanoparticles

Imaging methodology reveals nano details not seen before

NANO TECH
Swarming robots could be the servants of the future

Robot ants successfully mimic real colony behavior

Small swarm of robots could do tasks

Robots joining China businesses, factories




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement