New production method for carbon nanotubes gets green light by Staff Writers Swansea UK (SPX) Jan 08, 2020
A new method of producing carbon nanotubes - tiny molecules with incredible physical properties used in touchscreen displays, 5G networks and flexible electronics - has been given the green light by researchers, meaning work in this crucial field can continue. Single-walled carbon nanotubes are among the most attractive nanomaterials for a wide range of applications ranging from nanoelectronics to medical sensors. They can be imagined as the result of rolling a single graphene sheet into a tube. Their properties vary widely with their diameter, what chemists call chirality - how symmetrical they are - and by how the graphene sheet is rolled. The problem faced by researchers is that it is no longer possible to make high quality research samples of single-walled carbon nanotubes using the standard method. This was associated with the Carbon Center at Rice University, which used the high-pressure carbon monoxide (HiPco) gas-phase process developed by Nobel Laureate, the late Rick Smalley. The demise of the Carbon Center in the mid-2010s, the divesting of the remaining HiPco samples to a third-party entity with no definite plans of further production, and the expiration of the core patents for the HiPco process, meant that this existing source of nanotubes was no longer an option. Now however, a collaboration between scientists at Swansea University (Wales, UK), Rice University (USA), Lamar University (USA), and NoPo Nanotechnologies (India) has demonstrated that the latter's process and material design is a suitable replacement for the the Rice method. Analysis of the Rice "standard" and new commercial-scale samples show that back-to-back comparisons are possible between prior research and future applications, with the newer HiPco nanotubes from NoPo Nanotechnologies comparing very favourably to the older ones from Rice. These findings will go some way to reassure researchers who might have been concerned that their work could not continue as high-quality nanotubes would no longer be readily available. Professor Andrew Barron of Swansea University's Energy Safety Research Institute, the project lead, said: "Variability in carbon nanotube sources is known to be a significant issue when trying to compare research results from various groups. What is worse is that being able to correlate high quality literature results with scaled processes is still difficult". Erstwhile members of the Smalley group at Rice University, which developed the original HiPco process, helped start NoPo Nanotechnologies with the aim of updating the HiPco process, and produce what they call NoPo HiPCO SWCNTs. Lead author Dr. Varun Shenoy Gangoli stated: "It is in the interest of all researchers to understand how the presently available product compares to historically available Rice materials that have been the subject of a great range of academic studies, and also to those searching for a commercial replacement to continue research and development in this field." The new study appears in the open-access MDPI journal C.
A quantum breakthrough brings a technique from astronomy to the nano-scale New York NY (SPX) Jan 07, 2020 Researchers at Columbia University and University of California, San Diego, have introduced a novel "multi-messenger" approach to quantum physics that signifies a technological leap in how scientists can explore quantum materials. The findings appear in a recent article published in Nature Materials, led by A. S. McLeod, postdoctoral researcher, Columbia Nano Initiative, with co-authors Dmitri Basov and A. J. Millis at Columbia and R.A. Averitt at UC San Diego. "We have brought a technique f ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |