Practical superconducting nanowire single photon detector highly efficient by Staff Writers Beijing, China (SPX) Nov 14, 2017
Superconducting nanowire single-photon detectors (SNSPDs) offer significant improvement on detection efficiency (DE) compared to their semiconducting counterparts, having enabled many breakthrough applications in quantum information technologies. The team headed by Prof. Lixing You from Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS) (also affiliated to CAS Center for Excellence in Superconducting Electronics (CENSE)) first demonstrated the fabrication and operation of a NbN-SNSPD with system detection efficiency over 90% at 2.1 K at a wavelength of 1550 nm, which paves the way for practical application of SNSPD (Figure 1). The results were published recently on SCIENCE CHINA Physics, Mechanics and Astronomy [1] as a cover image story. Dr. Weijun Zhang is the first author and Dr. Lixing You is the corresponding author. At 1550 nm, which is the most important wavelength for applications, the state of the art SNSPD made of WSi superconductor has reached a DE record of 93% [2], compared to InGaAs detector with DE ~30%. Unfortunately, WSi-SNSPD usually operates at sub-kelvin temperatures, requiring expensive and user unfriendly refrigeration equipment. Extensive efforts are made on the development of SNSPDs based on NbN, targeted at operating temperature above 2K, accessible to inexpensive and user-friendly compact cryocoolers. With a decade research, the detection efficiency of NbN-SNSPDs were gradually increased to ~ 80%. However, further improvements are not reported. Achieving DE over 90% requires the simultaneous optimization of many different factors, including near perfect optical coupling, near perfect absorption, and near unity intrinsic quantum efficiency. Previous attempts at doing this have mostly been made through a process of trial and error. This paper first reported a NbN-SNSPD system based on G-M cryocooler with system detection efficiency over 90% (at dark count rate of 10 Hz) at 2.1 K at a wavelength of 1550 nm. The efficiency of the device saturates to 92% when the temperature is lowered to 1.8 K. The success of this device has been the result of using an integrated Distributed Bragg Reflector (DBR) cavity offering near unity refection at the interface, and through systematic optimization of the NbN nanowire's meandered geometry. The joint efforts enable researchers to simultaneously achieve the stringent requirements for coupling, absorption and intrinsic quantum efficiency. What is more, the device exhibit timing jitters down to 79 ps, almost half that of previously reported WSi-SNSPD, promising additional advantages in applications requiring high timing precision. The devices have been applied to the quantum information frontier experiments in University of Science and Technology of China. SNSPD with near unity detection efficiency operational on economical and user-friendly compact cryocooler will provide researchers a powerful and easy accessible tool, envisage further breakthrough in quantum information areas such as optical quantum computation/simulation, quantum key distribution etc., in a foreseeable near future.
Washington DC (SPX) Nov 09, 2017 Nanotechnology, the science of developing materials containing very small fibers, is having a growing influence on daily life. Now researchers have shown for the first time in mice that long and thin nanomaterials called carbon nanotubes may have the same carcinogenic effect as asbestos: they can induce the formation of mesothelioma. The findings were observed in 10%-25% of the 32 animals ... read more Related Links Science China Press Nano Technology News From SpaceMart.com Computer Chip Architecture, Technology and Manufacture
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |