. Nano Technology News .




.
NANO TECH
Reducing ion exchange particles to nano-size shows big potential
by Staff Writers
Aiken SC (SPX) Feb 09, 2012

File image.

Sometimes bigger isn't better. Researchers at the U.S. Department of Energy's Savannah River National Laboratory have successfully shown that they can replace useful little particles of monosodium titanate (MST) with even tinier nano-sized particles, making them even more useful for a variety of applications.

MST is an ion exchange material used to decontaminate radioactive and industrial wastewater solutions, and has been shown to be an effective way to deliver metals into living cells for some types of medical treatment. Typically, MST, and a modified form known as mMST developed by SRNL and Sandia National Laboratories, are in the form of fine powders, spherically-shaped particles about 1 to 10 microns in diameter (a micron is one-millionth of a meter).

"By making each particle smaller," says Dr. David Hobbs of SRNL, lead of the research project, "you increase the amount of surface area, compared to the overall volume of the particle. Since the particle surface is where reactions take place, you've increased the MST's working area."

For example, a 10-nanometer particle has a surface area-to-volume ratio that is 1000 times that of a 10-micron particle. Thus, this project sought to synthesize titanate materials that feature nano-scale particle sizes (1 - 200 nm).

After successfully synthesizing nanosize titanates, the team investigated and found that the smaller particles do indeed exhibit good ion exchange characteristics. They also serve as photocatalysts for the decomposition of organic contaminants and are effective platforms for the delivery of therapeutic metals.

Dr. Hobbs and his partners in the project examined three methods of producing nano-sized particles, resulting in three different shapes. One is a sol-gel method, similar to the process used to produce "normal" micron-sized MST particles, but using surfactants and dilute concentrations of reactive chemicals to control particle size. This method resulted in spherical particles about 100 - 150 nm in diameter.

A second method started with typical micron-sized particles, then delaminated and "unzipped" them to produce fibrous particles about 10 nm in diameter and 100 - 150 nm long. The third method, which had been previously reported in the scientific literature, was a hydrothermal technique that produced nanotubes with a diameter of about 10 nm and lengths of about 100 -500 nm.

The team had considerable expertise in working with MST, having previously modified it with peroxide to form mMST, which exhibits enhanced performance in removing certain contaminants from radioactive waste and delivering metals for medical treatment. Nanosize MST produced by all three methods was successfully converted to the peroxide-modified form.

As with micron-sized titanates, the peroxide-modified nanosize titanates exhibit a yellow color. The intensity of the yellow color appeared less intense with the hydrothermally produced nanotubes, suggesting the chemically resistant surface of the nanotubes may limit conversion to mMST.

Testing confirmed that the materials function as effective ion exchangers. For example, the spherical nanoMST and nanotube samples and their respective peroxide-modified forms remove strontium and actinides from alkaline high-level waste radioactive waste.

Under weakly acidic conditions, the nanosize titanates and peroxotitanates removed more than 90% of 17 different metal ions.

The "unzipped" titanates and their peroxide-modified forms proved to be particularly good photocatalysts for the decomposition of organic contaminants.

Screening in-vitro tests showed that both nano-size and micron-size metal-exchanged titanates inhibit the growth of a number of oral cancer and bacterial cell lines.

The mechanism of inhibition is not known, but preliminary scanning electron microscopy results suggest that the titanates may be interacting directly with the wall of the nucleus to deliver sufficient metal ion concentration to the cell nucleus to inhibit cell replication.

Related Links
DOE/Savannah River National Laboratory
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



NANO TECH
Bright Lights of Purity
Berkeley CA (SPX) Feb 06, 2012
To the lengthy list of serendipitous discoveries - gravity, penicillin, the New World - add this: Scientists with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have discovered why a promising technique for making quantum dots and nanorods has so far been a disappointment. Better still, they've also discovered how to correct the problem. A team o ... read more


NANO TECH
Airline industry split widens over EU carbon 'tax' row

India's need for aerospace engineers to grow

Ultimate parachute jump: Diver to break sound barrier

NANO TECH
China's new rockets expected to debut within five years

China announces new launch rockets

NANO TECH
WikiLeaks suspect arraignment for February 23

Computer security firm Symantec extorted by hackers

NANO TECH
Germany forced to tap into electricity reserves

China to face electricity shortages?

NANO TECH
Israel boosts naval forces in gas fields

WWF urges banks to block Sakhalin oil plan and save whales

Graphene electronics moves into a third dimension

India should scale up green technologies

NANO TECH
AAI Test and Training to Provide ABE for USAF and SOCOM

Lockheed Martin Awarded JIEDDO OPS Services Contract

Northrop Grumman Selected for US Army's CIRCM Technical Demonstration Program

EU won't pay for Greece border fence

NANO TECH
Stanford engineers weld nanowires with light

Reducing ion exchange particles to nano-size shows big potential

Nanorod-Assembled Order Affects Diffusion Rate and Direction

NANO TECH
Unraveling a Butterfly's Aerial Antics Could Help Builders of Bug-Size Flying Robots


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement