![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Stockholm, Sweden (SPX) Feb 09, 2022
A research team from KTH Royal Institute of Technology and Max Planck Institute of Colloids and Interfaces reports to have found the key to controlled fabrication of cerium oxide mesocrystals. The research is a step forward in tuning nanomaterials that can serve a wide range of uses -including solar cells, fuel catalysts and even medicine. Mesocrystals are nanoparticles with identical size, shape and crystallographic orientation, and they can be used as building blocks to create artificial nanostructures with customized optical, magnetic or electronic properties. In nature, these three-dimensional structures are found in coral, sea urchins and calcite desert rose, for example. Artificially-produced cerium oxide (CeO2) mesocrystals-or nanoceria-are well-known as catalysts, with antioxidant properties that could be useful in pharmaceutical development. "To be able to fabricate CeO2 mesocrystals in a controlled way, one needs to understand the formation mechanism of these materials," says Inna Soroka, a researcher in applied physical chemistry at KTH. She says the team used radiation chemistry to reveal for the first time the ceria mesocrystal formation mechanism. Because of their complexity, mesocrystal formation doesn't follow the same path as ordinary crystals-a process called Ostwald Ripening, where smaller particles in solution dissolve and deposit on larger particles. The researchers found that a gel-like, amorphous phase forms a matrix in which primary particles, about 3nm in size, align with each other, self-assembling into mesocrystals with a diameter of 30nm. "If the mesocrystal was a house, this amorphous phase plays the role of the cement that connects the aligned bricks in the walls, Dr. Soroka says. They also found that the mesocrystals can further self-organize and form supracrystals, visible to the naked eye. "Just as an architect may design not a single house but a whole neighborhood with the houses oriented in a certain way to serve the needs of their inhabitants," she says. This multi-level hierarchical architecture of supracrystals is an interesting concept for future materials design, she says. "People are fascinated by the variety of structures and complex forms that are found in nature, such as sea urchins and corals. And scientists are interested in how the crystallation processes work. Our work is a contribution to this understanding."
Research Report: "Radiation Chemistry Provides Nanoscopic Insights into the Role of Intermediate Phases in CeO2 Mesocrystal Formation"
![]() ![]() Speeding through nanowire Dresden, Germany (SPX) Feb 08, 2022 Smaller chips, faster computers, less energy consumption. Novel concepts based on semiconductor nanowires are expected to make transistors in microelectronic circuits better and more efficient. Electron mobility plays a key role in this: The faster electrons can accelerate in these tiny wires, the faster a transistor can switch and the less energy it requires. A team of researchers from the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), the TU Dresden and NaMLab has now succeeded in experimentally d ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |