. Nano Technology News .




NANO TECH
Size matters in nanocrystals' ability to adsorb release gases
by Staff Writers
Nashville TN (SPX) Aug 09, 2013


These are palladium nanocrystals. Credit: Bardhan Laboratory.

More efficient catalytic converters on autos, improved batteries and more sensitive gas sensors are some of the potential benefits of a new system that can directly measure the manner in which nanocrystals adsorb and release hydrogen and other gases.

The technique, which was developed by Vanderbilt University Assistant Professor of Chemical and Biomolecular Engineering Rizia Bardhan, is described in a paper published online Aug. 4 by the journal Nature Materials.

In the last 30 years, there has been a tremendous amount of research studying nanocrystals - tiny crystals sized between one to 100 nanometers in size (a nanometer is to an inch what an inch is to 400 miles) - because of the expectation that they have unique physical and chemical properties that can be used in a broad range of applications.

One class of applications depends on nanocrystals' ability to grab specific molecules and particles out the air, hold on to them and then release them: a process called adsorption and desorption. Progress in this area has been hindered by limitations in existing methods for measuring the physical and chemical changes that take place in individual nanocrystals during the process. As a result, advances have been achieved by trial-and-error and have been limited to engineered samples and specific geometries.

"Our technique is simple, direct and uses off-the shelf instruments so other researchers should have no difficulty using it," said Bardhan. Collaborators in the development were Vanderbilt Assistant Professor of Mechanical Engineering Cary Pint, Ali Javey from the University of California, Berkeley and Lester Hedges, Stephen Whitelam and Jeffrey Urban from the Lawrence Berkeley National Laboratory.

The method is based on a standard procedure called fluorescence spectroscopy. A laser beam is focused on the target nanocrystals, causing them to fluoresce. As the nanocrystals adsorb the gas molecules, the strength of their fluorescent dims and as they release the gas molecules, it recovers.

"The fluorescence effect is very subtle and very sensitive to differences in nanocrystal size," she explained. "To see it you must use nanocrystals that are uniform in size." That is one reason why the effect wasn't observed before: Fabrication techniques such as ball milling and other wet-chemical approaches that have been widely used produce nanocrystals in a range of different sizes. These differences are enough to mask the effect.

To test their technique, the researchers studied hydrogen gas sensing with nanocrystals made out of palladium. They choose palladium because it is very stable and it readily releases adsorbed hydrogen. They used hydrogen because of the interest in using it as a replacement for gasoline. One of the major technical obstacles to this scenario is developing a safe and cost-effective storage method. A nanocrystal-based metal hydride system is one of the promising approaches under development.

The measurements they made revealed that the size of the nanocrystals have a much stronger effect on the rate that the material can adsorb and release hydrogen and the amount of hydrogen that the material can absorb than previously expected - all key properties for a hydrogen storage system. The smaller the particle size, the faster the material can absorb the gas, the more gas it can absorb and faster it can release it.

"In the past, people thought that the size effect was limited to sizes less than 15 to 20 nanometers, but we found that it extends up to 100 nanometers," said Bardhan.

The researchers also determined that the adsorption/desorption rate was determined by just three factors: pressure, temperature and nanocrystal size. They did not find that additional factors such as defects and strain had a significant effect as previously suggested. Based on this new information, they created a simple computer simulation that can predict the adsorption/desorption rates of various types and size ranges of nanocrystals with a variety of different gases.

"This makes it possible to optimize a wide range of nanocrystal applications, including hydrogen storage systems, catalytic converters, batteries, fuel cells and supercapacitors," Bardhan said.

.


Related Links
Vanderbilt University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





NANO TECH
Water clears path for nanoribbon development
Houston TX (SPX) Aug 07, 2013
New research at Rice University shows how water makes it practical to form long graphene nanoribbons less than 10 nanometers wide. And it's unlikely that many of the other labs currently trying to harness the potential of graphene, a single-atom sheet of carbon, for microelectronics would have come up with the technique the Rice researchers found while they were looking for something else. ... read more


NANO TECH
South Korea resumes bidding in jet fighter deal

Chinese jetliner's first flight set back a year: state media

Lockheed Martin to Offer Universal Mission Equipment Package for US Army Helicopters

Bahrain eyes Eurofighter: BAE

NANO TECH
China launches three experimental satellites

Medical quarantine over for Shenzhou-10 astronauts

China's astronauts ready for longer missions

Chinese probe reaches record height in space travel

NANO TECH
German email providers team up for anti-snooping bid

Encrypted email linked to US leaker closes

Commentary: Online jihad

Huawei lashes out at ex-CIA chief over spying claims

NANO TECH
S. Korea facing power crisis

Kosovo activists urge US help to stop coal-fired plant project

Renewables Account For A Quarter Of New Energy Installed In USA

Spanish ministers meet with energy investors on market reforms

NANO TECH
Lightning strike sparks Venezuela oil refinery blaze

Iran beefs up oil tanker fleet on growing business from China

Keystone XL won't add to greenhouse emissions: study

Taking a cue from cactus, new spiky material removes oil from water

NANO TECH
India moves closer to buying U.S.-made howitzers

Boeing and US Navy Demo New Targeting and Data Systems on EA-18G

F-35B Ready For Sea Trials

U.S. Navy awards contracts for natural resources management

NANO TECH
SU Chemists Develop 'Fresh, New' Approach to Making Alloy Nanomaterials

Gold nanoparticles improve photodetector performance

Water clears path for nanoribbon development

New NIST nanoscale indenter takes novel approach to measuring surface properties

NANO TECH
Talking robot sent to ISS to 'get along' with humans

SkySweeper Robot Makes Inspecting Power Lines Simple and Inexpensive

Researchers create 'soft robotic' devices using water-based gels

'Printable' micro-machines could bring improved bionic limbs




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement