Nano Technology News  
NANO TECH
New way of computing with interaction-dependent nanomagnets
by Staff Writers
Tampa FL (SPX) Nov 06, 2015


The artist's portrayal is an illustration of a nanomagnetic coprocessor solving complex optimization problems and highlights the shape-engineered nanomagnet's two unique energy minimum states -- vortex and single domain. Image courtesy Ryan Wakefield. For a larger version of this image please go here.

Researchers from the University of South Florida College of Engineering have proposed a new form of computing that uses circular nanomagnets to solve quadratic optimization problems orders of magnitude faster than that of a conventional computer.

A wide range of application domains can be potentially accelerated through this research such as finding patterns in social media, error-correcting codes to Big Data and biosciences.

In an article published in the current issue of Nature Nanotechnology, "Non Boolean computing with nanomagnets for computer vision applications," authors Sanjukta Bhanja, D.K. Karunaratne, Ravi Panchumarthy, Srinath Rajaram, and Sudeep Sarkar discuss how their work harnessed the energy-minimization nature of nanomagnetic systems to solve the quadratic optimization problems that arise in computer vision applications, which are computationally expensive.

According to the authors, magnets have been used as computer memory/data storage since as early as 1920; they even made an entry into common hardware terminology like multi-"core." The field of nanomagnetism has recently attracted tremendous attention as it can potentially deliver low-power, high speed and dense non-volatile memories.

It is now possible to engineer the size, shape, spacing, orientation and composition of sub-100 nm magnetic structures. This has spurred the exploration of nanomagnets for unconventional computing paradigms.

By exploiting the magnetization states of nanomagnetic disks as state representations of a vortex and single domain, the research team has created a modeling framework to address the vortex and in-plane single domain in a unified framework and developed a magnetic Hamiltonian which is quadratic in nature.

The implemented magnetic system can identify the salient features of a given image with more than 85 percent true positive rate.

This form of computing, on average, is 1,528 times faster than IBM ILOG CPLEX (an industry standard software optimizer) with sparse affinity matrices (four neighbor), and 468 times faster with denser (eight neighbor) affinity matrices.

These results show the potential of this alternative computing method to develop a magnetic coprocessor that might solve complex problems in fewer clock cycles than traditional processors.

Nature Nanotechnology, "Non Boolean computing with nanomagnets for computer vision applications,"


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of South Florida (USF Innovation)
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
Finally a promising natural nanomaterial
Kazan, Russia (SPX) Oct 28, 2015
Yuri Lvov and Rawil Fakhrullin of Bionanotechnology Lab, Kazan Federal University, in cooperation with Wencai Wang and Liqun Zhang of State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology have recently presented in Advanced Materials a broad scope of application of halloysite clay tubes . Halloysite is a natural biocompatible nanomaterial available ... read more


NANO TECH
U.S. Army contracts Raytheon for FMS aircraft communications support

Subscale Glider Makes First Flight

Lockheed Martin and Boeing protest LRS-B contract award

Italy completes first F-35 mission

NANO TECH
China's self-developed Mars probe to be on show

Could Sino-U.S. cooperation bring the Martian home?

China's scientific satellites to enter uncharted territory

Declaration approved to promote Asia Pacific space cooperation

NANO TECH
Chinese still 'jumping' firewall to use Twitter: study

Police stage European raids against spy malware users

Senate passes cybersecurity bill over tech objections

Raytheon study finds more men then women attracted to cybersecurity career

NANO TECH
World in 'uncharted territory' as planet warms 1C, CO2 at new high

U.S., China lead in emissions, IEA finds

Up to 400 bn euros needed for clean EU energy grid by 2050: study

National contributions provide entry point for the low-carbon transformation

NANO TECH
Brownian Carnot engine

NbSe2, a true 2-D superconductor

New low-cost battery could help store renewable energy

Tech-sharing key to success of climate summit: France

NANO TECH
Report: U.S. Navy received almost 400 patents in fiscal 2015

Sniper Advanced Targeting Pods approved for Kuwait

Northrop Grumman delivers prototype shelters to U.S. Army

Microsoft Military Affairs to expand IT training program

NANO TECH
Researchers build nanoscale autonomous walking machine from DNA

New way of computing with interaction-dependent nanomagnets

Finally a promising natural nanomaterial

Umbrella-shaped diamond nanostructures make efficient photon collectors

NANO TECH
Humans can empathize with robots

How sensorimotor intelligence may develop

Robot's influent speaking just to get attention from you

'Spring-mass' technology heralds the future of walking robots









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.