. Nano Technology News .




.
NANO TECH
Berkeley Lab Researchers Ink Nanostructures with Tiny 'Soldering Iron'
by Staff Writers
Berkeley CA (SPX) Nov 08, 2011

Thermal dip-pen nanolithography turns the tip of a scanning probe microscope into a tiny soldering iron that can be used to draw chemical patterns as small as 20 nanometers on surfaces. (Image courtesy of DeYoreo, et. al)

Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have shed light on the role of temperature in controlling a fabrication technique for drawing chemical patterns as small as 20 nanometers.

This technique could provide an inexpensive, fast route to growing and patterning a wide variety of materials on surfaces to build electrical circuits and chemical sensors, or study how pharmaceuticals bind to proteins and viruses.

One way of directly writing nanoscale structures onto a substrate is to use an atomic force microscope (AFM) tip as a pen to deposit ink molecules through molecular diffusion onto the surface.

Unlike conventional nanofabrication techniques that are expensive, require specialized environments and usually work with only a few materials, this technique, called dip-pen nanolithography, can be used in almost any environment to write many different chemical compounds.

A cousin of this technique - called thermal dip-pen nanolithography - extends this technique to solid materials by turning an AFM tip into a tiny soldering iron.

Dip-pen nanolithography can be used to pattern features as small as 20 nanometers, more than forty thousand times smaller than the width of a human hair. What's more, the writing tip also performs as a surface profiler, allowing a freshly-writ surface to be imaged with nanoscale precision immediately after patterning.

"Tip-based manufacturing holds real promise for precise fabrication of nanoscale devices," says Jim DeYoreo, interim director of Berkeley Lab's Molecular Foundry, a DOE nanoscience research center.

"However, a robust technology requires a scientific foundation built on an understanding of material transfer during this process. Our study is the first to provide this fundamental understanding of thermal dip-pen nanolithography."

In this study, DeYoreo and coworkers systematically investigated the effect of temperature on feature size. Using their results, the team developed a new model to deconstruct how ink molecules travel from the writing tip to the substrate, assemble into an ordered layer and grow into a nanoscale feature.

"By carefully considering the role of temperature in thermal dip-pen nanolithography, we may be able to design and fabricate nanoscale patterns of materials ranging from small molecules to polymers with better control over feature sizes and shapes on a variety of substrates," says Sungwook Chung, a staff scientist in Berkeley Lab's Physical Biosciences Division, and Foundry user working with DeYoreo.

"This technique helps overcome fundamental length scale limitations without the need for complex growth methods."

DeYoreo and Chung collaborated with a research team from the University of Illinois at Urbana-Champaign that specializes in fabricating specialized tips for AFMs.

Here, these collaborators developed a silicon-based AFM tip with a gradient of charge-carrying atoms sprinkled into the silicon such that a higher number reside at the base while fewer sit at the tip. This makes the tip heat up when electricity flows through it, much like the burner on an electric stove.

This 'nanoheater' can then be used to heat up inks applied to the tip, causing them to flow to the surface for fabricating microscale and nanoscale features.

The group demonstrated this by drawing dots and lines of the organic molecule mercaptohexadecanoic acid on gold surfaces. The hotter the tip, the larger the feature size the team could draw.

"We are excited about this collaboration with Berkeley Lab, which combines their remarkable nanoscience capabilities with our technology to control temperature and heat flow on the nanometer scale," says co-author William P. King, a University of Illinois professor of mechanical sciences and engineering.

"Our ability to control the temperature within a nanometer-scale spot enabled this study of molecular-scale transport. By tuning the hotspot temperature, we can probe how molecules flow to a surface."

"This thermal control over tip-to-surface transfer developed by Professor King's group adds versatility by enabling on-the-fly variations in feature size and patterning of both liquid and solid materials," DeYoreo adds.

Chung is the lead author and DeYoreo the corresponding author of a paper reporting this research in the journal Applied Physics Letters. The paper is titled "Temperature-dependence of ink transport during thermal dip-pen nanolithography." Co-authoring the paper with Chung, DeYoreo and King were Jonathan Felts and Debin Wang.

Related Links
Molecular Foundry
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



NANO TECH
Study compares techniques for doping graphene for device and interconnect fabrication
Atlanta GA (SPX) Nov 08, 2011
Nanotechnology researchers at the Georgia Institute of Technology have conducted the first direct comparison of two fundamental techniques that could be used for chemically doping sheets of two-dimensional graphene for the fabrication of devices and interconnects. Chemical doping is routinely used in conventional three-dimensional semiconductors to control the density of electron carriers ... read more


NANO TECH
Aviation grappling with new taxes and rules: AAPA

EU sticks to airline carbon rules despite UN opposition

Asia airline body raps EU plan for carbon tax

OGC Team Produces Winning Single European Sky Aviation Proposal

NANO TECH
What does the Tiangong 1 space station mean for China

China masters space command, control

China's great big leap skyward

China space prowess benefits world

NANO TECH
Israel defense sector 'hit by cyberattack'

Raytheon to Modernize USAF's Cryptographic Units

Pentagon looks for weapons to wage cyber warfare

China hits out at US cyber spying accusations

NANO TECH
Australia approves carbon tax

Greenpeace protests 'climate killer' coal plant in S.Africa

Creating markets to pay for public good offer promise, peril

China plans switch to energy-saving lights

NANO TECH
US agency expects vindication in pipeline probe

China plays down Japan's arrest of fisherman

US handling of US-Canada pipeline study probed: documents

More promising natural gas storage?

NANO TECH
Taiwan Hawkeye aircraft head for US upgrading

DCGS-A Next-Gen ISR System Completes Baseline Software Certification Tests

Boeing, US Army Mark Delivery of First AH-64D Apache Block III Combat Helicopter

Libya's NTC pledges to destroy chemical weapons: OPCW

NANO TECH
Berkeley Lab Researchers Ink Nanostructures with Tiny 'Soldering Iron'

The secrets of tunneling through energy barriers

Scientists carve nanowires out of ultrananocrystalline diamond thin films

Study compares techniques for doping graphene for device and interconnect fabrication

NANO TECH
Mask-bot: A robot with a human face

NASA Robotic Lander Test Flight Will Aid in Future Lander Designs

Is that a robot in your suitcase?

Look, no hands -- robot uses gecko power to climb walls


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement