Nano Technology News
NANO TECH
Bright emission from hidden quantum states demonstrated in nanotechnology breakthrough
illustration only

Bright emission from hidden quantum states demonstrated in nanotechnology breakthrough

by Clarence Oxford
Los Angeles CA (SPX) Nov 13, 2025

Researchers at the City University of New York and the University of Texas at Austin have enabled the strong emission and direct control of previously hidden states of light called dark excitons in atomically thin semiconductor materials. This advancement, described in Nature Photonics, enables emission from dark excitons at the nanoscale and may facilitate faster, smaller, and more efficient devices.

Dark excitons, which exist in monolayer semiconductors, have long evaded detection by conventional optical methods due to weak light emission. They are valued for quantum computing and photonics as their properties include prolonged lifetimes and stability against environmental interference.

The research team engineered a nanoscale cavity by matching gold nanotubes with a single layer of tungsten diselenide (WSe2). The resulting structure increased emission from dark excitons by 300,000 times, making these quantum states detectable and tunable.

"This work shows that we can access and manipulate light-matter states that were previously out of reach," said principal investigator Andrea Alu of the CUNY Graduate Center. "By turning these hidden states on and off at will and controlling them with nanoscale resolution, we open exciting opportunities to disruptively advance next-generation optical and quantum technologies, including for sensing and computing."

The scientists demonstrated the ability to switch the dark exciton emission by applying electric and magnetic fields. This precise control supports further implementation in photonic circuitry and quantum information. The method preserves the intrinsic properties of the materials, while enabling significant enhancement of their optical response.

Jiamin Quan, first author, added: "Our study reveals a new family of spin-forbidden dark excitons that had never been observed before. This discovery is just the beginning - it opens a path to explore many other hidden quantum states in 2D materials."

The investigation resolves longstanding debate over whether plasmonic structures can enhance dark exciton emission without altering their quantum characteristics. The team accomplished this using thin boron nitride layers in their heterostructure.

Research Report:On-Site Enhancement and Control of Spin-Forbidden Dark Excitons in a Plasmonic Heterostructure

Related Links
Advanced Science Research Center, GC/CUNY
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
NANO TECH
Novel technique reveals true behavior of next-generation MXenes
Paris, France (SPX) Oct 07, 2025
Researchers have, for the first time, measured the intrinsic properties of individual MXene flakes - an emerging nanomaterial with promise for energy storage, electronics, and clean technologies - using a new light-based method called spectroscopic micro-ellipsometry (SME). The discovery provides crucial insights into how MXenes function at the nanoscale, potentially transforming how these materials are designed and deployed in advanced devices. MXenes (pronounced max-eens) are ultra-thin material ... read more

NANO TECH
Cislune Partners with UCF on Simulation to Improve Decision-Making for Future Lunar Missions

Japan launches initiative for lunar construction technology

SpaceX steps up planning for NASA lunar lander

NASA rejects Kardashian's claim Moon landing 'didn't happen'

NANO TECH
Tiangong hosts dual crews after debris impact delays Shenzhou-20 return

Chinese astronauts use upgraded oven to barbecue chicken wings and steaks aboard space station

China unveils 2026 mission for next generation crewed spaceship

China sends youngest astronaut, mice to space station

NANO TECH
STAR OS provides unified architecture for integrating AI systems across defense domains

South Korea to triple AI spending, boost defence budget

Chinese buses have major security flaw, says Oslo operator

Anvil Secure and D-Orbit outline steps to advance satellite cybersecurity across mission operations

NANO TECH
Cislune Partners with UCF on Simulation to Improve Decision-Making for Future Lunar Missions

Japan launches initiative for lunar construction technology

SpaceX steps up planning for NASA lunar lander

NASA rejects Kardashian's claim Moon landing 'didn't happen'

NANO TECH
Bright emission from hidden quantum states demonstrated in nanotechnology breakthrough

Novel technique reveals true behavior of next-generation MXenes

Unique phase of water revealed in nanoscale confinement

NANO TECH
Wits expands earth science with new observatory and CORES center

China increases lead in global remote sensing research as US share slips

Reflectivity of ocean clouds drops as air pollution falls and global temperatures climb

New Copernicus Satellite Strengthens Earth Observation Programme

NANO TECH
Bright emission from hidden quantum states demonstrated in nanotechnology breakthrough

Novel technique reveals true behavior of next-generation MXenes

Unique phase of water revealed in nanoscale confinement

NANO TECH
Amazon robotics lead casts doubt on eye-catching humanoids

Rise of the robots: the promise of physical AI

Miniature quadruped robot achieves record performance and resilience

Robots gain guarded acceptance in elderly care if safety and trust align

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.